Global stability and persistence of simple food chains

Mathematical Biosciences - Tập 76 - Trang 69-86 - 1985
H.I. Freedman1, J.W.-H. So1
1Department of Mathematics, University of Alberta, Edmonton, Canada T6G 2G1

Tài liệu tham khảo

Beddington, 1977, On the dynamics of host-parasite-hyperparasite interactions, J. Anim. Ecol., 46, 811, 10.2307/3642 G.J. Butler, H.I. Freedman, and Paul Waltman, Uniformly persistent systems, Proc. Amer. Math. Soc., to appear. Case, 1979, Global stability and multiple domains of attraction in ecological systems, Amer. Nat., 113, 705, 10.1086/283427 Cheng, 1981, Some results on global stability of a predator-prey system, J. Math. Biol., 12, 115, 10.1007/BF00275207 Chua, 1984, Functional response and searching efficiency in Pseudogonatopus flavifemur esaki and Hash. (Hymonoptera: Dryinidae), a parasite of rice planthoppe rs, Res. Population Ecol., 26, 74, 10.1007/BF02515508 Conrad, 1972, Stability of foodwebs and its relation to species diversity, J. Theoret. Biol., 34, 325, 10.1016/0022-5193(72)90165-8 De Angelis, 1975, Stability and connectance in food web models, Ecology, 56, 238, 10.2307/1935318 De Angelis, 1978, Criteria that forbid a large, nonlinear food-web model from having more than one equilibrium point, Math. Biosci., 41, 81, 10.1016/0025-5564(78)90067-6 L.H. Erbe and H.I. Freedman, Modeling persistence and mutual interference among subpopulations of ecological communities, Bull. Math. Biol., to appear. Freedman, 1979, Stability analysis of a predator-prey system with mutual interference and density-dependent death rates, Bull. Math. Biol., 41, 67, 10.1007/BF02547925 Freedman, 1980 Freedman, 1977, Mathematical analysis of some three species food-chain models, Math. Biosci., 33, 257, 10.1016/0025-5564(77)90142-0 Freedman, 1984, Persistence in models of three interacting predator-prey populations, Math. Biosci., 68, 213, 10.1016/0025-5564(84)90032-4 H.I. Freedman and Paul Waltman, Persistence in a model of three competitive populations, Math. Biosci., to appear. Gard, 1980, Persistence in food webs: Holling-type food chains, Math. Biosci., 49, 61, 10.1016/0025-5564(80)90110-8 Gard, 1980, Persistence in food webs with general interactions, Math. Biosci., 51, 165, 10.1016/0025-5564(80)90096-6 Gard, 1981, Persistence for ecosystem microcosm models, Ecol. Model., 12, 221, 10.1016/0304-3800(81)90039-9 Gard, 1982, Top predator persistence in differential equation models of food chains: The effect of omnivory and external forcing of lower trophic levels, J. Math. Biol., 14, 285, 10.1007/BF00275394 Gard, 1979, Persistence in food webs—1. Lotka-Volterra food chains, Bull. Math. Biol., 41, 877 Goh, 1978, Global stability in a class of predator-prey models, Bull. Math. Biol., 40, 525, 10.1007/BF02460776 Hale, 1969 Harrison, 1979, Global stability of food chains, Amer. Nat., 114, 455, 10.1086/283493 Hassell, 1971, Mutual interference between searching insect parasites, J. Anim. Ecol., 40, 473, 10.2307/3256 Hassell, 1969, New inductive population model for insect parasites and its bearing on biological control, Nature, 223, 1133, 10.1038/2231133a0 Hofbauer, 1981, General cooperation theorem for hypercycles, Monatsh. Math., 91, 233, 10.1007/BF01301790 Hsu, 1978, On global stability of a predator-prey system, Math. Biosci., 39, 1, 10.1016/0025-5564(78)90025-1 Hutson, 1983, A criterion for permanent coexistence of species, with an application to a two-prey one-predator system, Math. Biosci., 63, 253, 10.1016/0025-5564(82)90042-6 Rescigno, 1972, The struggle for life: III. A predator-prey food chain, Bull. Math. Biophys., 34, 521, 10.1007/BF02476712 Rogers, 1974, General models for insect parasite and predator searching behaviour: Interference, J. Anim. Ecol., 43, 239, 10.2307/3170 Saunders, 1975, On the stability of food chains, J. Theoret. Biol., 52, 121, 10.1016/0022-5193(75)90044-2 So, 1979, A note of the global stability and bifurcation phenomenon of a Lotka-Volterra food chain, J. Theoret. Biol., 80, 185, 10.1016/0022-5193(79)90204-2 J.W.-H. So and H.I. Freedman, Persistence and global stability in a predator-prey model consisting of three prey genotypes with genotypic fertility differences, to appear. Takeuchi, 1980, The existence of globally stable equilibria of ecosystems of the generalized Volterra type, J. Math. Biol., 10, 401, 10.1007/BF00276098 Takeuchi, 1978, The stability of generalized Volterra equations, J. Math. Anal. Appl., 62, 453, 10.1016/0022-247X(78)90139-7