Stable Ni-rich layered oxide cathode for sulfide-based all-solid-state lithium battery
Tài liệu tham khảo
Tarascon, 2001, Issues and challenges facing rechargeable lithium batteries, Nature, 414, 359367, 10.1038/35104644
Armand, 2008, Building better batteries, Nature, 451, 652657, 10.1038/451652a
Liu, 2019, Advances in electrochemical stability of sulfide solid-state electrolyte, J. Chin. Ceram. Soc., 47, 1
Goodenough, 2010, Challenges for rechargeable Li batteries, Chem. Mater., 22, 587, 10.1021/cm901452z
Wu, 2021, Progress in thermal stability of all-solid-state-Li-ion-batteries, InfoMat, 3, 827, 10.1002/inf2.12224
Agrawal, 2008, Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview, J. Phys. D., 41, 10.1088/0022-3727/41/22/223001
Fergus, 2010, Ceramic and polymeric solid electrolytes for lithium-ion batteries, J. Power Sources, 195, 4554, 10.1016/j.jpowsour.2010.01.076
Buannic, 2017, Dual substitution strategy to enhance Li+ ionic conductivity in Li7La3Zr2O12 solid electrolyte, Chem. Mater., 29, 1769, 10.1021/acs.chemmater.6b05369
Liu, 2018, Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries, J. Power Sources, 389, 120, 10.1016/j.jpowsour.2018.04.019
Wang, 2022, Improving thermal stability of sulfide solid electrolytes: an intrinsic theoretical paradigm, InfoMat, e12316, 10.1002/inf2.12316
Lu, 2021, Superior all-solid-state batteries enabled by a gas-phase-synthesized sulfide electrolyte with ultrahigh moisture stability and ionic conductivity, Adv. Mater., 2100921, 10.1002/adma.202100921
Wu, 2018, Advanced sulfide solid electrolyte by core-shell structural design, Nat. Commun., 9, 4037, 10.1038/s41467-018-06123-2
Fitzhugh, 2019, Strain-stabilized ceramic-sulfide electrolytes, Small, 15, 1901470, 10.1002/smll.201901470
Lu, 2022, Tuning the moisture stability of multiphase β-Li3PS4 solid electrolyte materials, Electrochem. Sci. Adv, e2100208
Hayashi, 2012, Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries, Nat. Commun., 3, 856, 10.1038/ncomms1843
Fitzhugh, 2019, A high-throughput search for functionally stable interfaces in sulfide solid-state lithium ion conductors, Adv. Energy Mater., 9, 1900807, 10.1002/aenm.201900807
Jung, 2015, Issues and challenges for bulk-type All-solid-state rechargeable lithium batteries using sulfide solid electrolytes, Isr. J. Chem., 55, 472, 10.1002/ijch.201400112
Xu, 2019, Liquid-involved synthesis and processing of sulfide-based solid electrolytes, electrodes, and all-solid-state batteries, Mater. Today Nano, 8, 100048, 10.1016/j.mtnano.2019.100048
Kato, 2016, High-power all-solid-state batteries using sulfide superionic conductors, Nat. Energy, 4, 16030, 10.1038/nenergy.2016.30
Liu, 2019, Practical evaluation of energy densities for sulfide solid-state batteries, eTransportation, 1, 100010, 10.1016/j.etran.2019.100010
Peng, 2021, High current density and long cycle life enabled by sulfide solid electrolyte and dendrite-free liquid lithium anode, Adv. Funct. Mater., 2105776
Xu, 2021, Water-stable sulfide solid electrolyte membranes directly applicable in all-solid-state batteries enabled by superhydrophobic Li+-Conducting protection layer, Adv. Energy Mater., 12, 2102348, 10.1002/aenm.202102348
Wu, 2022, Solid state ionics - selected topics and new directions, Prog. Mater. Sci., 126, 100921, 10.1016/j.pmatsci.2022.100921
Xu, 2020, Surface engineering of LiNi0.8Mn0.1Co0.1O2 towards boosting lithium storage: bimetallic oxides versus monometallic oxides, Nano Energy, 77, 105034, 10.1016/j.nanoen.2020.105034
Wu, 2020, All-solid-state lithium batteries with sulfide electrolytes and oxide cathodes, Electro. Energy. Rev., 4, 411
Wang, 2021, 5V-Class sulfurized spinel cathode stable in sulfide all-solid-state batteries, Nano Energy, 90, 106589, 10.1016/j.nanoen.2021.106589
Jung, 2021, The electrochemical performance of Li2CuO2–CuO composite-treated LiNi0.6Co0.2Mn0.2O2 cathode for all-solid-state lithium batteries, Mater. Chem. Phys., 270, 124808, 10.1016/j.matchemphys.2021.124808
Li, 2020, Outstanding electrochemical performances of the all-solid-state lithium battery using Ni-rich layered oxide cathode and sulfide electrolyte, J. Power Sources, 456, 227997, 10.1016/j.jpowsour.2020.227997
Kim, 2020, Novel dry deposition of LiNbO3 or Li2ZrO3 on LiNi0.6Co0.2Mn0.2O2 for high performance all-solid-state lithium batteries, Chem. Eng. J., 386, 123975, 10.1016/j.cej.2019.123975
Kitsche, 2021, High performance all-solid-state batteries with a Ni-rich NCM cathode coated by atomic layer deposition and lithium thiophosphate solid electrolyte, ACS Appl. Energy Mater., 4, 7338, 10.1021/acsaem.1c01487
Li, 2018, Construction of homogeneously Al3+ doped Ni rich Ni-Co-Mn cathode with high stable cycling performance and storage stability via scalable continuous precipitation, Electrochim. Acta, 291, 84, 10.1016/j.electacta.2018.08.124
Markus, 2014, Computational and experimental investigation of Ti substitution in Li1(NixMnxCo1-2x-yTiy)O2 for lithium ion batteries, J. Phys. Chem. Lett., 21, 3649, 10.1021/jz5017526
Chen, 2017, Decreasing Li/Ni disorder and improving the electrochemical performances of Ni-rich LiNi0.8Co0.1Mn0.1O2 by Ca doping, Inorg. Chem., 56, 8355, 10.1021/acs.inorgchem.7b01035
Saadoune, 1996, LiNi1–yCoyO2 positive electrode materials: relationships between the structure, physical properties and electrochemical behaviour, J. Mater. Chem., 6, 193, 10.1039/JM9960600193
Sun, 2019, A facile gaseous sulfur treatment strategy for Li-rich and Ni-rich cathode materials with high cycling and rate performance, Nano Energy, 63, 103887, 10.1016/j.nanoen.2019.103887
Banerjee, 2019, Revealing nanoscale solid-solid interfacial phenomena for long-life and high-energy all-solid-state batteries, ACS Appl. Mater. Interfaces, 11, 43138, 10.1021/acsami.9b13955
Azcatl, 2014, MoS2 functionalization for ultra-thin atomic layer deposited dielectrics, Appl. Phys. Lett., 104, 111601, 10.1063/1.4869149
Khosravi, 2019, High-κ dielectric on ReS2: in-situ thermal versus plasma-enhanced atomic layer deposition of Al2O3, Materials, 12, 1056, 10.3390/ma12071056
Kim, 2019, Degradation mechanism of highly Ni-rich Li[NixCoyMn1-x-y]O2 cathodes with x > 0.9, ACS Appl. Mater. Interfaces, 11, 30936, 10.1021/acsami.9b09754
Ryu, 2018, Capacity fading of Ni-rich Li[NixCoyMn1–x–y]O2 (0.6 ≤ x ≤ 0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation?, Chem. Mater., 30, 1155, 10.1021/acs.chemmater.7b05269
Ryu, 2019, Suppressing detrimental phase transitions via tungsten doping of LiNiO2 cathode for next-generation lithium-ion batteries, J. Mater. Chem., 7, 18580, 10.1039/C9TA06402H
Dahn, 2015, High-rate overcharge protection of LiFePO4-based Li-ion cells using the redox shuttle additive 2,5-Ditertbutyl-1,4-dimethoxybenzene, J. Electrochem. Soc., 152, A1283, 10.1149/1.1906025
Yan, 2015, Novel understanding of carbothermal reduction enhancing electronic and ionic conductivity of Li4Ti5O12 anode, J. Mater. Chem., 22, 11773, 10.1039/C5TA00887E
Auvergniot, 2017, Redox activity of argyrodite Li6PS5Cl electrolyte in all-solid-state Li-ion battery: an XPS study, Solid State Ionics, 300, 78, 10.1016/j.ssi.2016.11.029
Koerver, 2017, Redox-active cathode interphases in solid-state batteries, J. Mater. Chem., 5, 22750, 10.1039/C7TA07641J
Zhang, 2019, Unraveling the intra and intercycle interfacial evolution of Li6PS5Cl-based all-solid-state lithium batteries, Adv. Energy Mater., 10, 2070017, 10.1002/aenm.202070017
Koerver, 2017, Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes, Chem. Mater., 29, 5574, 10.1021/acs.chemmater.7b00931
Zhang, 2018, All-solid-state batteries with slurry coated LiNi0.8Co0.1Mn0.1O2 composite cathode and Li6PS5Cl electrolyte: effect of binder content, J. Power Sources, 391, 73, 10.1016/j.jpowsour.2018.04.069
Visbal, 2014, The influence of the carbonate species on LiNi0.8Co0.15Al0.05O2 surfaces for all-solid-state lithium ion battery performance, J. Power Sources, 269, 396, 10.1016/j.jpowsour.2014.07.021
Visbal, 2016, The effect of diamond-like carbon coating on LiNi0.8Co0.15Al0.05O2 particles for all solid-state lithium-ion batteries based on Li2S–P2S5 glass-ceramics, J. Power Sources, 314, 85, 10.1016/j.jpowsour.2016.02.088
Strauss, 2018, Impact of cathode material particle size on the capacity of bulk-type All-solid-state batteries, ACS Energy Lett., 3, 992, 10.1021/acsenergylett.8b00275
Kim, 2019, Stabilizing effect of a hybrid surface coating on a Ni-rich NCM cathode material in all-solid-state batteries, Chem. Mater., 31, 9664, 10.1021/acs.chemmater.9b02947
Peng, 2016, Insights on the fundamental lithium storage behavior of all-solid-state lithium batteries containing the LiNi0.8Co0.15Al0.05O2 cathode and sulfide electrolyte, J. Power Sources, 307, 724, 10.1016/j.jpowsour.2016.01.039
Oh, 2017, Single-step wet-chemical fabrication of sheet-type electrodes from solid-electrolyte precursors for all-solid-state lithium-ion batteries, J. Mater. Chem. A, 5, 20771, 10.1039/C7TA06873E
Nam, 2018, Toward practical all-solid-state lithium-ion batteries with high energy density and safety: comparative study for electrodes fabricated by dry- and slurry-mixing processes, J. Power Sources, 375, 93, 10.1016/j.jpowsour.2017.11.031
Li, 2021, High-rate and long-life Ni-rich oxide cathode under high mass loading for sulfide-based all-solid-state lithium batteries, Electrochim. Acta, 391, 138917, 10.1016/j.electacta.2021.138917
Zhang, 2021, Self-Stabilized LiNi0.8Mn0.1Co0.1O2 in thiophosphate-based all-solid-state batteries through extra LiOH, Energy Stor. Mater., 41, 505, 10.1016/j.ensm.2021.06.024
Li, 2020, Excellent performance single-crystal NCM cathode under high mass loading for all-solid-state lithium batteries, Electrochim. Acta, 363, 137185, 10.1016/j.electacta.2020.137185
Walther, 2021, The working principle of a Li2CO3/LiNbO3 coating on NCM for thiophosphate-based all-solid-state batteries, Chem. Mater., 33, 2110, 10.1021/acs.chemmater.0c04660