Stable Ni-rich layered oxide cathode for sulfide-based all-solid-state lithium battery

eScience - Tập 2 - Trang 537-545 - 2022
Yue Wang1,2,3,4,5, Zhixuan Wang1,2,3,4, Dengxu Wu1,2,3,4, Quanhai Niu1, Pushun Lu1,2,3,4, Tenghuan Ma1,2,3,4,5, Yibo Su6, Liquan Chen1,2,3,4, Hong Li1,2,3,4,5, Fan Wu1,2,3,4,5
1Tianmu Lake Institute of Advanced Energy Storage Technologies, Liyang, 213300, Jiangsu, China
2Yangtze River Delta Physics Research Center, Liyang, 213300, Jiangsu, China
3Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
4University of Chinese Academy of Sciences, Beijing, 100049, China
5Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
6Science and Technology Research Institute China Three Gorges Corporation Beijing, China

Tài liệu tham khảo

Tarascon, 2001, Issues and challenges facing rechargeable lithium batteries, Nature, 414, 359367, 10.1038/35104644 Armand, 2008, Building better batteries, Nature, 451, 652657, 10.1038/451652a Liu, 2019, Advances in electrochemical stability of sulfide solid-state electrolyte, J. Chin. Ceram. Soc., 47, 1 Goodenough, 2010, Challenges for rechargeable Li batteries, Chem. Mater., 22, 587, 10.1021/cm901452z Wu, 2021, Progress in thermal stability of all-solid-state-Li-ion-batteries, InfoMat, 3, 827, 10.1002/inf2.12224 Agrawal, 2008, Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview, J. Phys. D., 41, 10.1088/0022-3727/41/22/223001 Fergus, 2010, Ceramic and polymeric solid electrolytes for lithium-ion batteries, J. Power Sources, 195, 4554, 10.1016/j.jpowsour.2010.01.076 Buannic, 2017, Dual substitution strategy to enhance Li+ ionic conductivity in Li7La3Zr2O12 solid electrolyte, Chem. Mater., 29, 1769, 10.1021/acs.chemmater.6b05369 Liu, 2018, Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries, J. Power Sources, 389, 120, 10.1016/j.jpowsour.2018.04.019 Wang, 2022, Improving thermal stability of sulfide solid electrolytes: an intrinsic theoretical paradigm, InfoMat, e12316, 10.1002/inf2.12316 Lu, 2021, Superior all-solid-state batteries enabled by a gas-phase-synthesized sulfide electrolyte with ultrahigh moisture stability and ionic conductivity, Adv. Mater., 2100921, 10.1002/adma.202100921 Wu, 2018, Advanced sulfide solid electrolyte by core-shell structural design, Nat. Commun., 9, 4037, 10.1038/s41467-018-06123-2 Fitzhugh, 2019, Strain-stabilized ceramic-sulfide electrolytes, Small, 15, 1901470, 10.1002/smll.201901470 Lu, 2022, Tuning the moisture stability of multiphase β-Li3PS4 solid electrolyte materials, Electrochem. Sci. Adv, e2100208 Hayashi, 2012, Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries, Nat. Commun., 3, 856, 10.1038/ncomms1843 Fitzhugh, 2019, A high-throughput search for functionally stable interfaces in sulfide solid-state lithium ion conductors, Adv. Energy Mater., 9, 1900807, 10.1002/aenm.201900807 Jung, 2015, Issues and challenges for bulk-type All-solid-state rechargeable lithium batteries using sulfide solid electrolytes, Isr. J. Chem., 55, 472, 10.1002/ijch.201400112 Xu, 2019, Liquid-involved synthesis and processing of sulfide-based solid electrolytes, electrodes, and all-solid-state batteries, Mater. Today Nano, 8, 100048, 10.1016/j.mtnano.2019.100048 Kato, 2016, High-power all-solid-state batteries using sulfide superionic conductors, Nat. Energy, 4, 16030, 10.1038/nenergy.2016.30 Liu, 2019, Practical evaluation of energy densities for sulfide solid-state batteries, eTransportation, 1, 100010, 10.1016/j.etran.2019.100010 Peng, 2021, High current density and long cycle life enabled by sulfide solid electrolyte and dendrite-free liquid lithium anode, Adv. Funct. Mater., 2105776 Xu, 2021, Water-stable sulfide solid electrolyte membranes directly applicable in all-solid-state batteries enabled by superhydrophobic Li+-Conducting protection layer, Adv. Energy Mater., 12, 2102348, 10.1002/aenm.202102348 Wu, 2022, Solid state ionics - selected topics and new directions, Prog. Mater. Sci., 126, 100921, 10.1016/j.pmatsci.2022.100921 Xu, 2020, Surface engineering of LiNi0.8Mn0.1Co0.1O2 towards boosting lithium storage: bimetallic oxides versus monometallic oxides, Nano Energy, 77, 105034, 10.1016/j.nanoen.2020.105034 Wu, 2020, All-solid-state lithium batteries with sulfide electrolytes and oxide cathodes, Electro. Energy. Rev., 4, 411 Wang, 2021, 5V-Class sulfurized spinel cathode stable in sulfide all-solid-state batteries, Nano Energy, 90, 106589, 10.1016/j.nanoen.2021.106589 Jung, 2021, The electrochemical performance of Li2CuO2–CuO composite-treated LiNi0.6Co0.2Mn0.2O2 cathode for all-solid-state lithium batteries, Mater. Chem. Phys., 270, 124808, 10.1016/j.matchemphys.2021.124808 Li, 2020, Outstanding electrochemical performances of the all-solid-state lithium battery using Ni-rich layered oxide cathode and sulfide electrolyte, J. Power Sources, 456, 227997, 10.1016/j.jpowsour.2020.227997 Kim, 2020, Novel dry deposition of LiNbO3 or Li2ZrO3 on LiNi0.6Co0.2Mn0.2O2 for high performance all-solid-state lithium batteries, Chem. Eng. J., 386, 123975, 10.1016/j.cej.2019.123975 Kitsche, 2021, High performance all-solid-state batteries with a Ni-rich NCM cathode coated by atomic layer deposition and lithium thiophosphate solid electrolyte, ACS Appl. Energy Mater., 4, 7338, 10.1021/acsaem.1c01487 Li, 2018, Construction of homogeneously Al3+ doped Ni rich Ni-Co-Mn cathode with high stable cycling performance and storage stability via scalable continuous precipitation, Electrochim. Acta, 291, 84, 10.1016/j.electacta.2018.08.124 Markus, 2014, Computational and experimental investigation of Ti substitution in Li1(NixMnxCo1-2x-yTiy)O2 for lithium ion batteries, J. Phys. Chem. Lett., 21, 3649, 10.1021/jz5017526 Chen, 2017, Decreasing Li/Ni disorder and improving the electrochemical performances of Ni-rich LiNi0.8Co0.1Mn0.1O2 by Ca doping, Inorg. Chem., 56, 8355, 10.1021/acs.inorgchem.7b01035 Saadoune, 1996, LiNi1–yCoyO2 positive electrode materials: relationships between the structure, physical properties and electrochemical behaviour, J. Mater. Chem., 6, 193, 10.1039/JM9960600193 Sun, 2019, A facile gaseous sulfur treatment strategy for Li-rich and Ni-rich cathode materials with high cycling and rate performance, Nano Energy, 63, 103887, 10.1016/j.nanoen.2019.103887 Banerjee, 2019, Revealing nanoscale solid-solid interfacial phenomena for long-life and high-energy all-solid-state batteries, ACS Appl. Mater. Interfaces, 11, 43138, 10.1021/acsami.9b13955 Azcatl, 2014, MoS2 functionalization for ultra-thin atomic layer deposited dielectrics, Appl. Phys. Lett., 104, 111601, 10.1063/1.4869149 Khosravi, 2019, High-κ dielectric on ReS2: in-situ thermal versus plasma-enhanced atomic layer deposition of Al2O3, Materials, 12, 1056, 10.3390/ma12071056 Kim, 2019, Degradation mechanism of highly Ni-rich Li[NixCoyMn1-x-y]O2 cathodes with x > 0.9, ACS Appl. Mater. Interfaces, 11, 30936, 10.1021/acsami.9b09754 Ryu, 2018, Capacity fading of Ni-rich Li[NixCoyMn1–x–y]O2 (0.6 ≤ x ≤ 0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation?, Chem. Mater., 30, 1155, 10.1021/acs.chemmater.7b05269 Ryu, 2019, Suppressing detrimental phase transitions via tungsten doping of LiNiO2 cathode for next-generation lithium-ion batteries, J. Mater. Chem., 7, 18580, 10.1039/C9TA06402H Dahn, 2015, High-rate overcharge protection of LiFePO4-based Li-ion cells using the redox shuttle additive 2,5-Ditertbutyl-1,4-dimethoxybenzene, J. Electrochem. Soc., 152, A1283, 10.1149/1.1906025 Yan, 2015, Novel understanding of carbothermal reduction enhancing electronic and ionic conductivity of Li4Ti5O12 anode, J. Mater. Chem., 22, 11773, 10.1039/C5TA00887E Auvergniot, 2017, Redox activity of argyrodite Li6PS5Cl electrolyte in all-solid-state Li-ion battery: an XPS study, Solid State Ionics, 300, 78, 10.1016/j.ssi.2016.11.029 Koerver, 2017, Redox-active cathode interphases in solid-state batteries, J. Mater. Chem., 5, 22750, 10.1039/C7TA07641J Zhang, 2019, Unraveling the intra and intercycle interfacial evolution of Li6PS5Cl-based all-solid-state lithium batteries, Adv. Energy Mater., 10, 2070017, 10.1002/aenm.202070017 Koerver, 2017, Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes, Chem. Mater., 29, 5574, 10.1021/acs.chemmater.7b00931 Zhang, 2018, All-solid-state batteries with slurry coated LiNi0.8Co0.1Mn0.1O2 composite cathode and Li6PS5Cl electrolyte: effect of binder content, J. Power Sources, 391, 73, 10.1016/j.jpowsour.2018.04.069 Visbal, 2014, The influence of the carbonate species on LiNi0.8Co0.15Al0.05O2 surfaces for all-solid-state lithium ion battery performance, J. Power Sources, 269, 396, 10.1016/j.jpowsour.2014.07.021 Visbal, 2016, The effect of diamond-like carbon coating on LiNi0.8Co0.15Al0.05O2 particles for all solid-state lithium-ion batteries based on Li2S–P2S5 glass-ceramics, J. Power Sources, 314, 85, 10.1016/j.jpowsour.2016.02.088 Strauss, 2018, Impact of cathode material particle size on the capacity of bulk-type All-solid-state batteries, ACS Energy Lett., 3, 992, 10.1021/acsenergylett.8b00275 Kim, 2019, Stabilizing effect of a hybrid surface coating on a Ni-rich NCM cathode material in all-solid-state batteries, Chem. Mater., 31, 9664, 10.1021/acs.chemmater.9b02947 Peng, 2016, Insights on the fundamental lithium storage behavior of all-solid-state lithium batteries containing the LiNi0.8Co0.15Al0.05O2 cathode and sulfide electrolyte, J. Power Sources, 307, 724, 10.1016/j.jpowsour.2016.01.039 Oh, 2017, Single-step wet-chemical fabrication of sheet-type electrodes from solid-electrolyte precursors for all-solid-state lithium-ion batteries, J. Mater. Chem. A, 5, 20771, 10.1039/C7TA06873E Nam, 2018, Toward practical all-solid-state lithium-ion batteries with high energy density and safety: comparative study for electrodes fabricated by dry- and slurry-mixing processes, J. Power Sources, 375, 93, 10.1016/j.jpowsour.2017.11.031 Li, 2021, High-rate and long-life Ni-rich oxide cathode under high mass loading for sulfide-based all-solid-state lithium batteries, Electrochim. Acta, 391, 138917, 10.1016/j.electacta.2021.138917 Zhang, 2021, Self-Stabilized LiNi0.8Mn0.1Co0.1O2 in thiophosphate-based all-solid-state batteries through extra LiOH, Energy Stor. Mater., 41, 505, 10.1016/j.ensm.2021.06.024 Li, 2020, Excellent performance single-crystal NCM cathode under high mass loading for all-solid-state lithium batteries, Electrochim. Acta, 363, 137185, 10.1016/j.electacta.2020.137185 Walther, 2021, The working principle of a Li2CO3/LiNbO3 coating on NCM for thiophosphate-based all-solid-state batteries, Chem. Mater., 33, 2110, 10.1021/acs.chemmater.0c04660