Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene)

Nature - Tập 567 Số 7749 - Trang 511-515 - 2019
Eui Hyuk Jung1, Nam Joong Jeon1, Eun Young Park1, Chan Su Moon1, Tae Joo Shin2, Tae‐Youl Yang1, Jun Hong Noh1, Jangwon Seo1
1Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), Daejeon, South Korea
2Central Research Facilities, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea

Tóm tắt

Từ khóa


Tài liệu tham khảo

NREL. Best Research-Cell Efficiencies. National Renewable Energy Laboratory https://www.nrel.gov/pv/assets/images/efficiency-chart.png (2018).

Yang, W. S. et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017).

Jeon, N. J. et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015).

Yang, W. S. et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015).

Jeon, N. J. et al. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13, 897–903 (2014).

Bi, D. et al. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy 1, 16142 (2016).

Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013).

Zhang, M. et al. Stable and low-cost mesoscopic CH3NH3PbI2Br perovskite solar cells by using a thin poly(3-hexylthiophene) layer as a hole transporter. Chem. Eur. J. 21, 434–439 (2015).

Rong, Y., Liu, L., Mei, A., Li, X. & Han, H. Beyond efficiency: the challenge of stability in mesoscopic perovskite solar cells. Adv. Energy Mater. 5, 1501066-n/a (2015).

Qin, T. et al. Amorphous hole-transporting layer in slot-die coated perovskite solar cells. Nano Energy 31, 210–217 (2017).

Ludwigs, S. P3HT Revisited – From Molecular Scale to Solar Cell Devices Ch. 2 (Springer, Berlin, 2014).

Sirringhaus, H. et al. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401, 685 (1999).

Kim, Y. et al. Strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells. Nat. Mater. 5, 197 (2006).

Osedach, T. P., Andrew, T. L. & Bulović, V. Effect of synthetic accessibility on the commercial viability of organic photovoltaics. Energy Environ. Sci. 6, 711–718 (2013).

Osaka, I. & McCullough, R. D. Advances in molecular design and synthesis of regioregular polythiophenes. Acc. Chem. Res. 41, 1202–1214 (2008).

Hwang, K. et al. Toward large scale roll-to-roll production of fully printed perovskite solar cells. Adv. Mater. 27, 1241–1247 (2015).

Brabec, C. J. & Durrant, J. R. Solution-processed organic solar cells. MRS Bull. 33, 670–675 (2008).

Krebs, F. C., Gevorgyan, S. A. & Alstrup, J. A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies. J. Mater. Chem. 19, 5442–5451 (2009).

Nia, N. Y., Matteocci, F., Cina, L. & Di Carlo, A. High-efficiency perovskite solar cell based on poly(3-hexylthiophene): influence of molecular weight and mesoscopic scaffold layer. ChemSusChem 10, 3854–3860 (2017).

Stolterfoht, M. et al. The perovskite/transport layer interfaces dominate non-radiative recombination in efficient perovskite solar cells. Preprint at https://arxiv.org/abs/1810.01333 (2018).

Bi, D., Yang, L., Boschloo, G., Hagfeldt, A. & Johansson, E. M. J. Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells. J. Phys. Chem. Lett. 4, 1532–1536 (2013).

Brauer, J. C., Lee, Y. H., Nazeeruddin, M. K. & Banerji, N. Charge transfer dynamics from organometal halide perovskite to polymeric hole transport materials in hybrid solar cells. J. Phys. Chem. Lett. 6, 3675–3681 (2015).

Taguchi, M. et al. 24.7% record efficiency HIT solar cell on thin silicon wafer. IEEE J. Photovolt. 4, 96–99 (2014).

Yang, S. et al. Functionalization of perovskite thin films with moisture-tolerant molecules. Nat. Energy 1, 15016 (2016).

Tsoi, W. C. et al. The nature of in-plane skeleton Raman modes of P3HT and their correlation to the degree of molecular order in P3HT:PCBM blend thin films. J. Am. Chem. Soc. 133, 9834–9843 (2011).

Chen, H. et al. A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules. Nature 550, 92–95 (2017).

Wang, G., Swensen, J., Moses, D. & Heeger, A. J. Increased mobility from regioregular poly(3-hexylthiophene) field-effect transistors. J. Appl. Phys. 93, 6137 (2003).

Veres, J., Ogier, S. & Lloyd, G. Gate insulators in organic field-effect transistors. Chem. Mater. 16, 4543–4555 (2004).

Shi, D. et al. Spiro-OMeTAD single crystals: Remarkably enhanced charge-carrier transport via mesoscale ordering. Sci. Adv. 2, e1501491 (2016).

Pysch, D., Mette, A. & Glunz, S. W. A review and comparison of different methods to determine the series resistance of solar cells. Sol. Energy Mater. Sol. Cells 91, 1698–1706 (2007).