The herbarium of the future
Tài liệu tham khảo
Meineke, 2019, Biological collections for understanding biodiversity in the Anthropocene, Philos. Trans. R. Soc. B, 374, 10.1098/rstb.2017.0386
Kress, 2022, Lords of the biosphere: plant winners and losers in the Anthropocene, Plants People Planet, 4, 350, 10.1002/ppp3.10252
Heberling, 2019, The changing uses of herbarium data in an era of global change: an overview using automated content analysis, BioScience, 69, 812, 10.1093/biosci/biz094
Meineke, 2018, The unrealized potential of herbaria for global change biology, Ecol. Monogr., 88, 505, 10.1002/ecm.1307
Bieker, 2018, Implications and future prospects for evolutionary analyses of DNA in historical herbarium collections, Bot. Lett., 165, 409, 10.1080/23818107.2018.1458651
Funk, 2018, Collections-based science in the 21st century, J. Syst. Evol., 56, 175, 10.1111/jse.12315
Carine, 2018, Examining the spectra of herbarium uses and users, Bot. Lett., 165, 328, 10.1080/23818107.2018.1482782
Bebber, 2010, Herbaria are a major frontier for species discovery, Proc. Natl. Acad. Sci. U. S. A., 107, 22169, 10.1073/pnas.1011841108
Goodwin, 2020, How long does it take to discover a species?, Syst. Biodivers., 18, 784, 10.1080/14772000.2020.1751339
Goodwin, 2015, Widespread mistaken identity in tropical plant collections, Curr. Biol., 25, R1066, 10.1016/j.cub.2015.10.002
Hedrick, 2020, Digitization and the future of natural history collections, BioScience, 70, 243, 10.1093/biosci/biz163
Cardoso, 2017, Amazon plant diversity revealed by a taxonomically verified species list, Proc. Natl. Acad. Sci. U. S. A., 114, 10695, 10.1073/pnas.1706756114
2015, Growing knowledge: an overview of seed plant diversity in Brazil, Rodriguésia, 66, 1085, 10.1590/2175-7860201566411
Jardim Botânico do Rio de Janeiro, 2020
Cámara-Leret, 2020, New Guinea has the world’s richest island flora, Nature, 584, 579, 10.1038/s41586-020-2549-5
Grace, 2021, Botanical monography in the Anthropocene, Trends Plant Sci., 26, 433, 10.1016/j.tplants.2020.12.018
Muñoz-Rodríguez, 2019, A taxonomic monograph of Ipomoea integrated across phylogenetic scales, Nat. Plants, 5, 1136, 10.1038/s41477-019-0535-4
Raven, 2020, The distribution of biodiversity richness in the tropics, Sci. Adv., 6, 10.1126/sciadv.abc6228
Folk, 2021, High-throughput methods for efficiently building massive phylogenies from natural history collections, Appl. Plant Sci., 9, 10.1002/aps3.11410
Bieker, 2022, Uncovering the genomic basis of an extraordinary plant invasion. Science, Advances, 8
Exposito-Alonso, 2018, The rate and potential relevance of new mutations in a colonizing plant lineage, PLoS Genet., 14, 10.1371/journal.pgen.1007155
Lewin, 2018, Earth BioGenome project: sequencing life for the future of life, Proc. Natl. Acad. Sci. U. S. A., 115, 4325, 10.1073/pnas.1720115115
Shee, 2020, Reconstructing the complex evolutionary history of the Papuasian Schefflera radiation through herbariomics, Front. Plant Sci., 11, 258, 10.3389/fpls.2020.00258
Kates, 2021, The effects of herbarium specimen characteristics on short-read NGS sequencing success in nearly 8000 specimens: old, degraded samples have lower DNA yields but consistent sequencing success, Front. Plant Sci., 12, 10.3389/fpls.2021.669064
Welch, 2016, The quest to resolve recent radiations: plastid phylogenomics of extinct and endangered Hawaiian endemic mints (Lamiaceae), Mol. Phylog. Evol., 99, 16, 10.1016/j.ympev.2016.02.024
Kistler, 2020, Ancient plant genomics in archaeology, herbaria, and the environment, Annu. Rev. Plant Biol., 71, 605, 10.1146/annurev-arplant-081519-035837
Card, 2021, Museum genomics, Annu. Rev. Genet., 55, 633, 10.1146/annurev-genet-071719-020506
Cai, 2022, PhyloHerb: a high-throughput phylogenomic pipeline for processing genome skimming data, Appl. Plant Sci., 10, 10.1002/aps3.11475
Wäldchen, 2018, Automated plant species identification—trends and future directions, PLoS Comp. Biol., 14, 10.1371/journal.pcbi.1005993
Hernandez, 2020, How to do scientific field work when you can’t get to the right field, The Wall Street, Journal, 3
Goëau, 2022, Overview of PlantCLEF 2022: image-based plant identification at global scale, Working Notes of CLEF, 1526
Heberling, 2021, Data integration enables global biodiversity synthesis, Proc. Natl. Acad. Sci. U. S. A., 118, 10.1073/pnas.2018093118
Mishler, 2020, Spatial phylogenetics of the North American flora, J. Syst. Evol., 58, 393, 10.1111/jse.12590
Koch, 2022, Maximizing citizen scientists' contribution to automated species recognition, Sci. Rep., 12, 7648, 10.1038/s41598-022-11257-x
Davis, 2020, A new method for counting reproductive structures in digitized herbarium specimens using mask R-CNN, Front. Plant Sci., 11, 1129, 10.3389/fpls.2020.01129
Pearson, 2020, Machine learning using digitized herbarium specimens to advance phenological research, BioScience, 70, 610, 10.1093/biosci/biaa044
Hussein, 2022, Applications of computer vision and machine learning techniques for digitized herbarium specimens: a systematic literature review, Ecol. Inform., 69, 10.1016/j.ecoinf.2022.101641
Davis, 2015, Herbarium records are reliable sources of phenological change driven by climate and provide novel insights into species’ phenological cueing mechanisms, Amer. J. Bot., 102, 1599, 10.3732/ajb.1500237
Davis, 2022, New directions in tropical phenology, Trends Ecol. Evol., 37, 683, 10.1016/j.tree.2022.05.001
Park, 2022, Herbarium records provide reliable phenology estimates in the understudied tropics, J. Ecol.
Park, 2019, Herbarium specimens reveal substantial and unexpected variation in phenological sensitivity across the eastern United States, Philos. Trans. R. Soc. B, 374, 10.1098/rstb.2017.0394
Park, 2022, Phenological displacement is uncommon among sympatric angiosperms, New Phytol., 233, 1466, 10.1111/nph.17784
Meineke, 2021, Phenological sensitivity to temperature mediates herbivory, Glob. Chang. Biol., 27, 2315, 10.1111/gcb.15600
Meineke, 2019, Herbarium specimens reveal increasing herbivory over the past century, J. Ecol., 107, 105, 10.1111/1365-2745.13057
Weber, 2013, The phylogenetic distribution of extrafloral nectaries in plants, Ann. Bot., 111, 1251, 10.1093/aob/mcs225
Weber, 2012, Phylogeny, ecology, and the coupling of comparative and experimental approaches, Trends Ecol. Evol., 27, 394, 10.1016/j.tree.2012.04.010
Xie, 2022, The ecological implications of intra- and inter-species variation in phenological sensitivity, New Phytol., 236, 760, 10.1111/nph.18361
Meireles, 2020, Leaf reflectance spectra capture the evolutionary history of seed plants, New Phytol., 228, 485, 10.1111/nph.16771
Kothari, 2022, Reflectance spectroscopy allows rapid, accurate and non-destructive estimates of functional traits from pressed leaves, Methods Ecol. Evol.
Miller, 2019, Chemical evidence for the use of multiple psychotropic plants in a 1,000-year-old ritual bundle from South America, Proc. Natl. Acad. Sci. U. S. A., 116, 11207, 10.1073/pnas.1902174116
Foutami, 2018, Hundred fifty years of herbarium collections provide a reliable resource of volatile terpenoid profiles showing strong species effect in four medicinal species of Salvia across the Mediterranean, Front. Plant Sci., 9, 1877, 10.3389/fpls.2018.01877
Allen, 2019, Biodiversity synthesis across the green branches of the tree of life, Nat. Plants, 5, 11, 10.1038/s41477-018-0322-7
Hagen, 2021, Earth history events shaped the evolution of uneven biodiversity across tropical moist forests, Proc. Natl. Acad. Sci. U. S. A., 118, 10.1073/pnas.2026347118
Ding, 2020, Ancient orogenic and monsoon-driven assembly of the world’s richest temperate alpine flora, Science, 369, 578, 10.1126/science.abb4484
Daru, 2019, Spatial overlaps between the global protected areas network and terrestrial hotspots of evolutionary diversity, Glob. Ecol. Biogeogr., 28, 757, 10.1111/geb.12888
Simkin, 2022, Biodiversity impacts and conservation implications of urban land expansion projected to 2050, Proc. Natl. Acad. Sci. U. S. A., 119, 10.1073/pnas.2117297119
Daru, 2021, Widespread homogenization of plant communities in the Anthropocene, Nat. Commun., 12, 6983, 10.1038/s41467-021-27186-8
Exposito-Alonso, 2022, Genetic diversity loss in the Anthropocene, Science, 377, 1431, 10.1126/science.abn5642
Kling, 2019, Facets of phylodiversity: evolutionary diversification, divergence and survival as conservation targets, Philos. Trans. R. Soc. B, 374, 10.1098/rstb.2017.0397
Rønsted, 2022, Extinction risk of the endemic vascular flora of Kauai, Hawaii, based on IUCN assessments, Conserv. Biol., 36, 10.1111/cobi.13896
Jaenicke-Despres, 2003, Early allelic selection in maize as revealed by ancient DNA, Science, 302, 1206, 10.1126/science.1089056
Swarts, 2017, Genomic estimation of complex traits reveals ancient maize adaptation to temperate North America, Science, 357, 512, 10.1126/science.aam9425
White, 2021, The origins of coca: museum genomics reveals multiple independent domestications from progenitor Erythroxylum gracilipes, Syst. Biol., 70, 1, 10.1093/sysbio/syaa074
Rosche, 2022, Tracking population genetic signatures of local extinction with herbarium specimens, Ann. Bot., 129, 857, 10.1093/aob/mcac061
Castañeda-Álvarez, 2016, Global conservation priorities for crop wild relatives, Nat. Plants, 2, 16022, 10.1038/nplants.2016.22
Howes, 2020, Molecules from nature: reconciling biodiversity conservation and global healthcare imperatives for sustainable use of medicinal plants and fungi, Plants People Planet, 2, 463, 10.1002/ppp3.10138
Park, 2021, The colonial legacy of herbaria, bioRxiv
Rights, C.o.H., 1993
Gardner, 2022, Engagement with indigenous people preserves local knowledge and biodiversity alike, Curr. Biol., 32, R511, 10.1016/j.cub.2022.04.062
Drew, 2017, Digitization of museum collections holds the potential to enhance researcher diversity, Nat. Ecol. Evol., 1, 1789, 10.1038/s41559-017-0401-6
Davis, 2021, Back to the future: a refined single-user photostation for massively scaling herbarium digitization, TAXON, 70, 635, 10.1002/tax.12459
McNutt, 2016, Liberating field science samples and data, Science, 351, 1024, 10.1126/science.aad7048
Schorn, 2016, The New England Vascular Plants Project: 295,000 specimens and counting, Rhodora, 118, 324, 10.3119/15-34
Ebenezer, 2022, Africa: sequence 100,000 species to safeguard biodiversity, Nature, 603, 388, 10.1038/d41586-022-00712-4
Lendemer, 2020, The extended specimen network: a strategy to enhance US biodiversity collections, promote research and education, BioScience, 70, 23, 10.1093/biosci/biz140
Daru, 2018, Widespread sampling biases in herbaria revealed from large-scale digitization, New Phytol., 217, 939, 10.1111/nph.14855
Pearse, 2017, A statistical estimator for determining the limits of contemporary and historic phenology, Nat. Ecol. Evol., 1, 1876, 10.1038/s41559-017-0350-0
Rocchetti, 2021, A pragmatic and prudent consensus on the resurrection of extinct plant species using herbarium specimens, TAXON, 71, 168, 10.1002/tax.12601
G.A. Rocchetti, et al. (2022) Selecting the best candidates for resurrecting extinct-in-the-wild plants from herbaria. Nat. Plants https://doi.org/10.1038/s41477-022-01296-7
Feeney, 2022, In Search of Thoreau’s Flowers’ examines the famous author as citizen scientist, The Boston, Globe, 29
Carland-Adams, 2022
Flannery, 2013, The herbarium as muse: plant specimens as inspiration
Mannion, 2014, The latitudinal biodiversity gradient through deep time, Trends Ecol. Evol., 29, 42, 10.1016/j.tree.2013.09.012
Beery, 2021, Scaling biodiversity monitoring for the data age, XRDS, 27, 14, 10.1145/3466857
Koski, 2020, Floral pigmentation has responded rapidly to global change in ozone and temperature, Curr. Biol., 30, 4425, 10.1016/j.cub.2020.08.077
Willis, 2008, Phylogenetic patterns of species loss in Thoreau’s woods are driven by climate change, Proceedings of the National Academy of Sciences of the United States of America, 105, 17029, 10.1073/pnas.0806446105
Willis, 2010, Favorable climate change response explains non-native species’ success in Thoreau’s woods, PLoS ONE, 5, 10.1371/journal.pone.0008878