Preparation of protein nanocrystals and their characterization by solid state NMR

Journal of Magnetic Resonance - Tập 165 - Trang 162-174 - 2003
Rachel W. Martin1, Kurt W. Zilm2
1Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520-8107, USA
2Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520-8107 USA

Tài liệu tham khảo

Przybycien, 1998, Protein–protein interactions as a means of purification, Curr. Opin. Biotechnol., 9, 164, 10.1016/S0958-1669(98)80110-9 Margolin, 2001, Protein crystals as novel catalytic materials, Angew. Chem. Int. Edit., 40, 2205, 10.1002/1521-3773(20010618)40:12<2204::AID-ANIE2204>3.0.CO;2-J Klibanov, 2001, Improving enzymes by using them in organic solvents, Nature, 409, 241, 10.1038/35051719 Jen, 2001, Diamonds in the rough: protein crystals from a formulation perspective, Pharm. Res., 18, 1483, 10.1023/A:1013057825942 Shenoy, 2001, Stability of crystalline proteins, Biotechnol. Bioeng., 73, 358, 10.1002/bit.1069 Elkordy, 2002, Integrity of crystalline lysozyme exceeds that of a spray-dried form, Int. J. Pharm., 247, 79, 10.1016/S0378-5173(02)00379-4 Lalonde, 1996, Cross-linked crystals stabilise enzymes, Manuf. Chemist, 67, 19 Ayala, 2002, Cross-linked crystals of chloroperoxidase, Biochem. Biophys. Res. Commun., 295, 828, 10.1016/S0006-291X(02)00766-0 Doscher, 1963, Activity of an enzyme in crystalline state—Ribonuclease S, J. Biol. Chem., 238, 2399, 10.1016/S0021-9258(19)67984-6 Haouz, 2001, Involvement of protein dynamics in enzyme stability—The case of glucose oxidase, Febs Lett., 506, 216, 10.1016/S0014-5793(01)02917-9 Vilenchik, 1998, Protein crystals as novel microporous materials, J. Am. Chem. Soc., 120, 4290, 10.1021/ja973449+ Bishop, 1968, Properties of liquids in small pores—rates of diffusion of some solutes in cross-linked crystals of beta-lactoglobulin, J. Mol. Biol., 38, 315, 10.1016/0022-2836(68)90389-6 Jakeman, 1998, Effects of sample preparation conditions on biomolecular solid-state NMR lineshapes, J. Biomol. NMR, 12, 417, 10.1023/A:1008305118426 Griffiths, 1993, Nuclear magnetic resonance methods for measuring dipolar couplings in rotating solids, Anal. Chim. Acta, 283, 1081, 10.1016/0003-2670(93)80267-O McDowell, 1996, High-resolution NMR of biological solids, Curr. Opin. Struct. Biol., 6, 624, 10.1016/S0959-440X(96)80028-5 Miller, 1998, Stabilization of lactate dehydrogenase following freeze-thawing and vacuum-drying in the presence of trehalose and borate, Pharm. Res., 15, 1215, 10.1023/A:1011987707515 Clegg, 1965, Comp. Biochem. Physiol., 14, 135, 10.1016/0010-406X(65)90014-9 Yoshioka, 1999, Molecular mobility of protein in lyophilized formulations linked to the molecular mobility of polymer excipients, as determined by high resolution C-13 solid-state NMR, Pharm. Res., 16, 1621, 10.1023/A:1018973125010 Lam, 2002, A solid-state NMR study of protein mobility in lyophilized protein-sugar powders, J. Pharm. Sci., 91, 943, 10.1002/jps.10089 Gregory, 1993, The influence of hydration on the conformation of lysozyme studied by solid-state 13C-NMR spectroscopy, Biopolymers, 33, 513, 10.1002/bip.360330402 Gregory, 1993, The influence of hydration on the conformation of bovine serum albumin studied by solid-state 13C-NMR spectroscopy, Biopolymers, 33, 1871, 10.1002/bip.360331212 Madhusudan, 1993, Protein hydration and water structure: X-ray analysis of a closely packed protein crystal with very low solvent content, Acta Crystallogr. D, 49, 234, 10.1107/S090744499200653X Nagendra, 1998, Role of water in plasticity, stability and action of proteins: the crystal structures of lysozyme at very low levels of hydration, Proteins, 32, 229, 10.1002/(SICI)1097-0134(19980801)32:2<229::AID-PROT9>3.0.CO;2-F Bell, 1999, X-ray crystal structures of a severely desiccated protein, Protein Sci., 8, 2033, 10.1110/ps.8.10.2033 Detken, 2001, Methods for sequential resonance assignment in solid, uniformly 13C, 15N labelled peptides: quantification and application to antamanide, J. Biomol. NMR, 20, 203, 10.1023/A:1011212100630 Rienstra, 2000, 2D and 3D 15N–13C–13C NMR chemical shift correlation spectroscopy of solids: assignment of MAS spectra of peptides, J. Am. Chem. Soc., 122, 10979, 10.1021/ja001092v Straus, 1998, Experiments and strategies for the assignment of fully 13C/15N-labelled polypeptides by solid state NMR, J. Biomol. NMR, 12, 39, 10.1023/A:1008280716360 McDermott, 2000, Partial NMR assignments for uniformly (13C, 15N)-enriched BPTI in the solid state, J. Biomol. NMR, 16, 209, 10.1023/A:1008391625633 Hong, 1999, Resonance assignment of 13C/15N labeled solid proteins by two- and three-dimensional magic-angle-spinning NMR, J. Biomol. NMR, 15, 1, 10.1023/A:1008334204412 Pauli, 2001, Backbone and side-chain C-13 and N-15 signal assignments of the alpha-spectrin SH3 domain by magic angle spinning solid-state NMR at 17.6 tesla, Chembiochem, 2, 272, 10.1002/1439-7633(20010401)2:4<272::AID-CBIC272>3.0.CO;2-2 van Rossum, 2001, Assignments of the nonexchanging protons of the α-spectrin SH3 domain by two- and three-dimensional 1H–13C solid-state magic-angle spinning NMR and comparison of solution and solid-state proton chemical shifts, Chembiochem, 2, 906, 10.1002/1439-7633(20011203)2:12<906::AID-CBIC906>3.0.CO;2-M Pauli, 2000, Sample optimization and identification of signal patterns of amino acid side chains in 2D RFDR spectra of the alpha-spectrin SH3 domain, J. Magn. Reson., 143, 411, 10.1006/jmre.2000.2029 Timasheff, 1988, Mechanism of protein precipitation and stabilization by co-solvents, J. Cryst. Growth, 90, 39, 10.1016/0022-0248(88)90296-5 McPherson, 1995, Increasing the size of microcrystals by fine sampling of pH limits, J. Appl. Crystallogr., 28, 362, 10.1107/S0021889895002706 Ng, 1996, The crystallization of biological macromolecules from precipitates: evidence for Ostwald ripening, J. Cryst. Growth, 168, 50, 10.1016/0022-0248(96)00362-4 Lee, 2000, A systematic approach to the large-scale production of protein crystals, Enzyme Microb. Technol., 26, 582, 10.1016/S0141-0229(99)00194-5 Stephenson, 2001, Characterization of the solid state: quantitative issues, Adv. Drug Delivery Rev., 48, 67, 10.1016/S0169-409X(01)00099-0 Bugay, 2001, Characterization of the solid-state: spectroscopic techniques, Adv. Drug Delivery Rev., 48, 43, 10.1016/S0169-409X(01)00101-6 Vippagunta, 2001, Crystalline solids, Adv. Drug Delivery Rev., 48, 3, 10.1016/S0169-409X(01)00097-7 Weber, 1997, vol. 276, 13 Ries-Kautt, 1997, vol. 276, 23 McPherson, 1985, vol. 114, 112 Cudney, 1994, Screening and optimization strategies for macromolecular crystal growth, Acta Crystallogr. D, 50, 414, 10.1107/S0907444994002660 Yoshizaki, 2001, Systematic analysis of supersaturation and lysozyme crystal quality, Acta Crystallogr. D, 57, 1621, 10.1107/S0907444901013610 Guilloteau, 1992, Variation of lysozyme solubility as a function of temperature in the presence of organic and inorganic salts, J. Cryst. Growth, 122, 223, 10.1016/0022-0248(92)90249-I Durbin, 1986, Crystal-growth studies of lysozyme as a model for protein crystallization, J. Cryst. Growth, 76, 583, 10.1016/0022-0248(86)90175-2 Howard, 1988, The solubility of hen egg-white lysozyme, J. Cryst. Growth, 90, 94, 10.1016/0022-0248(88)90303-X McPherson, 1976, Crystallization of proteins from polyethylene glycol, J. Biol. Chem., 251, 6300, 10.1016/S0021-9258(20)81858-4 Sousa, 1995, Use of glycerol, polyols and other protein-structure stabilizing agents in protein crystallization, Acta Crystallogr. D, 51, 271, 10.1107/S0907444994014009 Sousa, 1997, vol. 276, 131 Z. Otinowski,in: Proceedings of the CCP4 Study Weekend (SERC Daresbury Laboratory England), Oscillation Data Reduction Program, 1993 XDISPLAYF Program, Purdue University, 1993 FIT2D V9.129 Reference Manual V 3.1, ESRF, 1997 FIT2D: An Introduction and Overview, ESRF, 1997 Martin, 2003, Design of a triple resonance MAS probe for high field solid state NMR, Rev. Sci. Instrum., 74, 3045, 10.1063/1.1571951 Bennett, 1998, Homonuclear radio frequency-driven recoupling in rotating solids, J. Chem. Phys., 108, 9463, 10.1063/1.476420 Morcombe, 2003, Chemical shift referencing in MAS solid state NMR, J. Magn. Reson., 162, 479, 10.1016/S1090-7807(03)00082-X Cook, 1979, Crystallization and preliminary X-ray investigation of ubiquitin, a non-histone chromosomal protein, J. Mol. Biol., 130, 353, 10.1016/0022-2836(79)90546-1 Vijay-Kumar, 1985, Three-dimensional structure of ubiquitin at 2.8 Angstrom resolution, Proc. Natl. Acad. Sci. USA, 82, 3582, 10.1073/pnas.82.11.3582 Vijay-Kumar, 1987, Structure of ubiquitin refined at 1.8 Angstrom resolution, J. Mol. Biol., 194, 531, 10.1016/0022-2836(87)90679-6 Steinrauf, 1959, Preliminary X-ray data for some new crystalline forms of beta-lactoglobulin and hen egg-white lysozyme, Acta Crystallogr., 12, 77, 10.1107/S0365110X59000238 Ries-Kautt, 1989, Relative effectiveness of various ions on the solubility and crystal-growth of lysozyme, J. Biol. Chem., 264, 745, 10.1016/S0021-9258(19)85005-6 Allerhand, 1976, Studies of individual carbon sites of hen egg white lysozyme by natural abundance carbon-13 nuclear magnetic resonance spectroscopy: assignment of the nonprotonated aromatic carbon resonances to specific residues in the sequence, J. Biol. Chem., 252, 1786, 10.1016/S0021-9258(17)40619-3 Pahler, 1987, Characterization and crystallization of core streptavidin, J. Biol. Chem., 262, 13933, 10.1016/S0021-9258(18)47884-2 Leonidas, 1997, Crystal structures of ribonuclease A complexes with 5′-diphosphadenosine 3′-phosphate and 5′-diphosphoadenine 2′-phosphate at 1.7 Angstrom resolution, Biochemistry, 36, 5578, 10.1021/bi9700330 Sanishvili, 1994, Crystallization of wild-type and mutant ferricytochromes c at low ionic strength: seeding technique and X-ray diffraction analysis, Acta Crystallogr. D, 50, 687, 10.1107/S0907444994002568 Oldfield, 1973, Cytochrome c. Observation of numerous single-carbon sites of the reduced and oxidized species by means of natural abundance 13C nuclear magnetic resonance spectroscopy, Proc. Natl. Acad. Sci. USA, 70, 3531, 10.1073/pnas.70.12.3531 Garman, 1996, Glycerol concentrations required for cryoprotection of 50 typical protein crystallization solutions, J. Appl. Crystallogr., 29, 584, 10.1107/S0021889896004190 Fyfe, 1988, J. Am. Chem. Soc., 110, 3373, 10.1021/ja00219a005 Vitkup, 2000, Solvent mobility and the protein glass transition, Nat. Struct. Biol., 7, 34, 10.1038/71231 Lee, 2002, Temperature dependence of the internal dynamics of a calmodulin-peptide complex, Biochemistry, 41, 13814, 10.1021/bi026380d Von Dreele, 2000, The first protein crystal structure determined from high-resolution X-ray powder diffraction data: a variant of T3R3 human insulin-zinc complex produced by grinding, Acta Crystallogr. D, 56, 1549, 10.1107/S0907444900013901 Von Dreele, 2001, Binding of N-acetylglucosamine to chicken egg lysozyme: a powder diffraction study, Acta Crystallogr. D, 57, 1836, 10.1107/S0907444901015748