Effect of Mg/Co on the properties of CdS thin films deposited by spray pyrolysis technique
Tài liệu tham khảo
Britt, 1993, Thin‐film CdS/CdTe solar cell with 15.8% efficiency, Appl. Phys. Lett., 62, 10.1063/1.109629
Zong, 2008, Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation, J. Am. Chem. Soc., 130, 7176, 10.1021/ja8007825
Rmili, 2013, Structural, optical and electrical properties of Ni-doped CdS thin films prepared by spray pyrolysis, J. Alloy. Comp., 557, 53, 10.1016/j.jallcom.2012.12.136
Lee, 2010, Adsorption-controlled growth of BiMnO3 films by molecular-beam epitaxy, Appl. Phys. Lett., 96, 262905, 10.1063/1.3457786
Liu, 2007, Fe-doped and (Zn, Fe) co-doped CdS films: could the Zn doping affect the concentration of Fe2+ and the optical properties, Physica B, 389, 248, 10.1016/j.physb.2006.06.157
Sivaraman, 2016, Structural, morphological, optical and electrical properties of CdS thin films simultaneously doped with magnesium and chlorine, J. Mater. Sci. Mater. Electron., 27, 1158, 10.1007/s10854-015-3865-7
Selvan, 2016, Structural, optical and electrical properties of Cl-doped ternary CdZnS thin films towards optoelectronic applications, Optik, 127, 4943, 10.1016/j.ijleo.2016.02.047
Abubacker, 2017, Optoelectronic, magnetic and antifungal properties of CdS thin films co-doped with zinc and bromine, J. Mater. Sci. Mater. Electron., 28, 10433, 10.1007/s10854-017-6815-8
Bacaksiz, 2008, Structural, optical and magnetic properties of Cd1-xCoxS thin films prepared by spray pyrolysis, Physica B, 403, 3740, 10.1016/j.physb.2008.07.006
Baderaa, 2013, Photoconductivity of Cobalt doped CdS thin films, Phys. Procedia, 49, 190, 10.1016/j.phpro.2013.10.026
Huse, 2013, The crystallographic and optical studies on cobalt doped CdS nanoparticles, World J. Condens. Matter Phys., 3, 46, 10.4236/wjcmp.2013.31008
Caballero-Briones, 2015, Mg-doped CdS films prepared by chemical bath deposition, Opt. Electr. Prop. Chalcogenide Lett., 12, 137
Murugesan, 2017, Structural, optical and magnetic properties of Ba and Ni doped CdS thin films prepared by spray pyrolysis method, J. Mater. Sci. Mater. Electron., 28, 12432, 10.1007/s10854-017-7064-6
Song, 2016, Eu3+- Mn2+- doped bi-functional glasses with solar photon downshifting: application to CdS/CdTe solar cells, J. Alloy. Comp., 661, 10.1016/j.jallcom.2015.11.168
Salavati-Niasari, 2009, Synthesis and characterization of ZnS nanoclusters via hydrothermal processing from [bis (salicylidene) zinc(II)], J. Alloy. Comp., 470, 502, 10.1016/j.jallcom.2008.03.048
Ebadi, 2018, Synthesis of CeO2/Ag/Ho nanostructures in order to improve photo catalytic activity of CeO2 under visible light, J. Mater. Sci. Mater. Electron., 29, 8817, 10.1007/s10854-018-8899-1
Sabet, 2014, Using different chemical methods for deposition of CdS on TiO2 surface and investigation of their influences on the dye-sensitized solar cell performance, Electrochim. Acta, 117, 504, 10.1016/j.electacta.2013.11.176
Kianpour, 2013, Sonochemical synthesis and characterization of NiMoO4 nanorods, Ultrason. Sonochem., 20, 418, 10.1016/j.ultsonch.2012.08.012
Amiri, 2014, 147% improve efficiency of dye synthesized solar cells by using CdS QDs and Au nanorods and Au nanoparticles, RSC Adv., 4, 62356, 10.1039/C4RA10316E
Amiri, 2016, Enhanced DSSCs efficiency via Cooperate co-absorbance (CdS QDs) and plasmonic core-shell nanoparticle (Ag@PVP), Sci. Rep., 6, 25227, 10.1038/srep25227
Guptaa, 2012, Bandgap variation in size controlled nanostructured Li–Ni co-doped CdO thin films, J. Alloy. Comp., 515, 96, 10.1016/j.jallcom.2011.11.098
Devadoss 1, 2016, Band gap tailoring and yellow band emission of Cd0.9_x Mnx Zn0.1S, (x= 0 to0.05) nanoparticles: influence of Mn concentration, Mater. Sci. Semicond. Process., 41, 282, 10.1016/j.mssp.2015.09.020
Roy, 2006, In situ deposition of Sn-doped CdS thin films by chemical bath deposition and their characterization, J. Phys. D Appl. Phys., 39, 4771, 10.1088/0022-3727/39/22/006
Karthik, 2018, Multifunctional properties of CdO nanostructures Synthesised through microwave assisted hydrothermal method, Mater. Res. Innov.
Lee, 2004, Raman scattering and photoluminescence analysis of B-doped CdS thin films, Thin Solid Films, 451, 170, 10.1016/j.tsf.2003.10.103
Chuu, 1991, Raman investigations of the surface modes of the crystallites in CdS thin films grown by pulsed laser and thermal evaporation, J. Appl. Phys., 68, 8402, 10.1063/1.347405
Jiang, 2007, Synthesis of sphere-like Co3O4 nanocrystals via a simple polyol route, Mater. Lett., 61, 4894, 10.1016/j.matlet.2007.03.067
Kilo, 2014, Electrospray deposition and characterization of cobalt oxide thin films, Mater. Sci. Semicond. Process., 24, 57, 10.1016/j.mssp.2014.03.008
Cho, 2017, Rational design of 1-D Co3O4 nanofibers @ low content graphene composite anode for high performance Li-ion batteries, Sci. Rep., 7, 45105, 10.1038/srep45105
Kumar, 2012, CdS nanofilms, effect of film thickness on morphology and optical band gap, J. Appl. Phys., 112, 123512, 10.1063/1.4769799
Karthik, 2019, Fabrication of MgO nanostructures and its efficient photocatalytic, antibacterial and anticancer performance, J. Photochem. Photobiol. B Biol., 190, 8, 10.1016/j.jphotobiol.2018.11.001
Lokhande, 1983, Effect of aluminum doping on the properties of PEC cells formed with CdS: Al films, Mater. Res. Bull., 18, 1295, 10.1016/0025-5408(83)90035-1
Peng, 2006, Synthesis and photoluminescence of ZnS:Cu nanoparticles, Opt. Mater., 29, 313, 10.1016/j.optmat.2005.10.003
Ahmad – Bitar, 2000, Effect of doping and heat treatment on the photoluminescence of CdS films deposited by spray pyrolysis, Renew. Energy, 19, 579, 10.1016/S0960-1481(99)00067-1
Madhu, 2008, Room-temperature ferromagnetism in Pure GaN and CdS semiconductor nanoparticles, Phys. Rev. B., 77, 201306, 10.1103/PhysRevB.77.201306
Wang, 2010, Facile synthesis of superparamagnetic Fe-doped ZnO nanoparticles in liquid polyols, Mater. Lett., 64, 2373, 10.1016/j.matlet.2010.07.062
Adamo, 2015, Enhanced electrical and magnetic properties in La0.7Sr0.3MnO3 thin films deposited on CaTiO3-buffered silicon substrates, Apl. Mater., 3, 10.1063/1.4915486
Ke, 2013, Structural control of magnetic anisotropy in a strain-driven multiferroic EuTiO3 thin film, Phys. Rev. B, 88, 10.1103/PhysRevB.88.094434