Synergistic properties of molybdenum disulfide (MoS2) with electro-active materials for high-performance supercapacitors

International Journal of Hydrogen Energy - Tập 44 - Trang 17470-17492 - 2019
Muhammad B. Wazir1, Muhammad Daud1, Nehar Ullah1, Abdul Hai1, Amir Muhammad1, Mohammad Younas1, Mashallah Rezakazemi2
1Department of Chemical Engineering, University of Engineering and Technology, 25120 Peshawar, Pakistan
2Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran

Tài liệu tham khảo

Winter, 2004, What are batteries, fuel cells, and supercapacitors?, Chem Rev, 104, 4245, 10.1021/cr020730k Zhang, 2009, Carbon-based materials as supercapacitor electrodes, Chem Soc Rev, 38, 2520, 10.1039/b813846j Xiong, 2014, A review of graphene-based electrochemical microsupercapacitors, Electroanalysis, 26, 30, 10.1002/elan.201300238 Burke, 2000, Ultracapacitors: why, how, and where is the technology, J Power Sources, 91, 37, 10.1016/S0378-7753(00)00485-7 Miller, 2008, Materials science: electrochemical capacitors for energy management, Science, 321, 651, 10.1126/science.1158736 Yu, 2015, Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions, Energy Environ Sci, 8, 702, 10.1039/C4EE03229B SIMON, 2009, 320 Conway, 1999 Wang, 2012, A review of electrode materials for electrochemical supercapacitors, Chem Soc Rev, 41, 797, 10.1039/C1CS15060J Zhi, 2013, Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review, Nanoscale, 5, 72, 10.1039/C2NR32040A Liu, 2013, Preparation of activated carbon aerogels with hierarchically porous structures for electrical double layer capacitors, Electrochim Acta, 89, 571, 10.1016/j.electacta.2012.11.033 Zheng, 2012, Hierarchical carbon nanotube membrane with high packing density and tunable porous structure for high voltage supercapacitors, Carbon N Y, 50, 5167, 10.1016/j.carbon.2012.06.058 Staaf, 2014, Present and future supercapacitor carbon electrode materials for improved energy storage used in intelligent wireless sensor systems, Nanomater Energy, 9, 128, 10.1016/j.nanoen.2014.06.028 McArthur, 2018, A binder-free Ir 0.4 Ru 0.6 -oxide/functionalized multi-walled carbon nanotube electrode for possible applications in supercapacitors, Can J Chem Eng, 96, 74, 10.1002/cjce.22837 Snook, 2011, Conducting-polymer-based supercapacitor devices and electrodes, J Power Sources, 196, 1, 10.1016/j.jpowsour.2010.06.084 Ryu, 2002, Symmetric redox supercapacitor with conducting polyaniline electrodes, J Power Sources, 103, 305, 10.1016/S0378-7753(01)00862-X Gómez-Romero, 2003, Hybrid organic–inorganic nanocomposite materials for application in solid state electrochemical supercapacitors, Electrochem Commun, 5, 149, 10.1016/S1388-2481(03)00010-9 Suematsu, 2000, Conducting polymer films of cross-linked structure and their QCM analysis, Electrochim Acta, 45, 3813, 10.1016/S0013-4686(00)00466-7 Snook, 2008, The measurement of specific capacitances of conducting polymers using the quartz crystal microbalance, J Electroanal Chem, 612, 140, 10.1016/j.jelechem.2007.08.024 Lee, 2016, Synthesis of cobalt oxide-manganese oxide on activated carbon electrodes for electrochemical capacitor application using a liquid phase plasma method, Int J Hydrogen Energy, 41, 7582, 10.1016/j.ijhydene.2016.02.011 Zheng, 1995, Hydrous ruthenium oxide as an electrode material for electrochemical capacitors, J Electrochem Soc, 142, 2699, 10.1149/1.2050077 Karade, 2016, MoS 2 ultrathin nanoflakes for high performance supercapacitors: room temperature chemical bath deposition (CBD), RSC Adv, 6, 39159, 10.1039/C6RA04441G Zhang, 2017, A review of recent progress in molybdenum disulfide-based supercapacitors and batteries, Inorg Chem Front, 4, 1602, 10.1039/C7QI00515F Kumar, 2015, Graphene and molybdenum disulfide hybrids: synthesis and applications, Mater Today, 18, 286, 10.1016/j.mattod.2015.01.016 Wang, 2017, MoS2-Based nanocomposites for electrochemical energy storage, Adv Sci, 4, 1600289, 10.1002/advs.201600289 Kumar, 2018, Recent advances in two-dimensional nanomaterials for supercapacitor electrode applications, ACS Energy Lett, 3, 482, 10.1021/acsenergylett.7b01169 Wang, 2017, MoS 2/polymer nanocomposites: preparation, properties, and applications, Polym Rev, 57, 440, 10.1080/15583724.2017.1309662 Huang, 2015, Synthesis of reduced graphene oxide wrapped-copper sulfide hollow spheres as electrode material for supercapacitor, Int J Hydrogen Energy, 40, 10158, 10.1016/j.ijhydene.2015.05.152 Fan, 2018, Synthesis of CuCo2S4 nanosheet arrays on Ni foam as binder-free electrode for asymmetric supercapacitor, Int J Hydrogen Energy, 43, 23372, 10.1016/j.ijhydene.2018.10.190 Gao, 2017, Two-dimensional transition metal diseleniums for energy storage application: a review of recent developments, CrystEngComm, 19, 404, 10.1039/C6CE02223E Hu, 2014, Three-dimensional cross-linked carbon network wrapped with ordered polyaniline nanowires for high-performance pseudo-supercapacitors, J Power Sources, 268, 451, 10.1016/j.jpowsour.2014.06.074 Sharma, 2010, A review on electrochemical double-layer capacitors, Energy Convers Manag, 51, 2901, 10.1016/j.enconman.2010.06.031 Sharma, 2008, Manganese oxide embedded polypyrrole nanocomposites for electrochemical supercapacitor, Electrochim Acta, 53, 7690, 10.1016/j.electacta.2008.04.028 Fan, 2007, High electroactivity of polyaniline in supercapacitors by using a hierarchically porous carbon monolith as a support, Adv Funct Mater, 17, 3083, 10.1002/adfm.200700518 Ullah, 2015, Iridium-ruthenium-oxide coatings for supercapacitors, Can J Chem Eng, 93, 1941, 10.1002/cjce.22318 Hsieh, 2008, Investigation on capacity fading of aqueous MnO2 nH2O electrochemical capacitor, J Power Sources, 177, 660, 10.1016/j.jpowsour.2007.11.026 Zheng, 2010, Multilayered films of cobalt oxyhydroxide nanowires/manganese oxide nanosheets for electrochemical capacitor, J Power Sources, 195, 680, 10.1016/j.jpowsour.2009.08.002 Brousse, 2006, Crystalline MnO2 as possible alternative to amorphous compounds in electrochemical supercapacitors, J Electrochem Soc, 153, A2171, 10.1149/1.2352197 Chen, 2009, Hydrothermal preparation of octadecahedron Fe3O4 thin film for use in an electrochemical supercapacitor, Electrochim Acta, 55, 1, 10.1016/j.electacta.2009.04.017 Wu, 2007, Electrodeposition of nanoporous nickel oxide film for electrochemical capacitors, Int J Hydrogen Energy, 32, 4153, 10.1016/j.ijhydene.2007.06.001 Daud, 2016, Graphene/layered double hydroxides nanocomposites: a review of recent progress in synthesis and applications, Carbon N Y, 104, 241, 10.1016/j.carbon.2016.03.057 Cai, 2015, Solvothermal synthesis of NiCo-layered double hydroxide nanosheets decorated on RGO sheets for high performance supercapacitor, Chem Eng J, 268, 251, 10.1016/j.cej.2015.01.072 Fang, 2013, Synthesis and electrochemical performance of graphene-like WS 2, Chem Eur J, 19, 5694, 10.1002/chem.201204254 Mortazavi, 2014, Ab initio characterization of layered MoS2 as anode for sodium-ion batteries, J Power Sources, 268, 279, 10.1016/j.jpowsour.2014.06.049 Sen, 2013, High-rate and high-energy-density lithium-ion battery anode containing 2D MoS 2 nanowall and cellulose binder, ACS Appl Mater Interfaces, 5, 1240, 10.1021/am3022015 Zhang, 2015, Constructing highly oriented configuration by few-layer MoS 2 : toward high-performance lithium-ion batteries and hydrogen evolution reactions, ACS Nano, 9, 12464, 10.1021/acsnano.5b05891 Deng, 2017, 3D ordered macroporous MoS 2 @C nanostructure for flexible Li-ion batteries, Adv Mater, 29, 1603020, 10.1002/adma.201603020 Wang, 2017, Recent advances in transition-metal dichalcogenides based electrochemical biosensors: a review, Biosens Bioelectron, 97, 305, 10.1016/j.bios.2017.06.011 Chen, 2018, A sandwich-type electrochemical biosensing platform for microRNA-21 detection using carbon sphere-MoS 2 and catalyzed hairpin assembly for signal amplification, Sensor Actuator B Chem, 270, 179, 10.1016/j.snb.2018.05.031 Liang, 2014, Effect of MoS2 on hydrogenation storage properties of LiBH4, J Solid State Chem, 211, 21, 10.1016/j.jssc.2013.11.041 Han, 2018, Novel application of MgH2/MoS2 hydrogen storage materials to thiophene hydrodesulfurization: a combined experimental and theoretical case study, Mater Des, 158, 213, 10.1016/j.matdes.2018.08.036 Pan, 2018, Role of S-S interlayer spacing on the hydrogen storage mechanism of MoS 2, Int J Hydrogen Energy, 43, 3087, 10.1016/j.ijhydene.2017.12.185 Qin, 2018, Efficient hydrogen evolution and rapid degradation of organic pollutants by robust catalysts of MoS2/TNT@CNTs, Int J Hydrogen Energy, 43, 16024, 10.1016/j.ijhydene.2018.07.051 Huang, 2019, Hierarchical MoS2 nanosheets integrated Ti3C2 MXenes for electrocatalytic hydrogen evolution, Int J Hydrogen Energy, 44, 965, 10.1016/j.ijhydene.2018.11.084 Feng, 2018, MoS2 supported on MOF-derived carbon with core-shell structure as efficient electrocatalysts for hydrogen evolution reaction, Int J Hydrogen Energy, 43, 20538, 10.1016/j.ijhydene.2018.09.057 Wang, 2014, High-performance sodium-ion batteries and sodium-ion pseudocapacitors based on MoS2/graphene composites, Chem Eur J, 20, 9607, 10.1002/chem.201402563 Patil, 2016, Fabrication of ultra-high energy and power asymmetric supercapacitors based on hybrid 2D MoS 2/graphene oxide composite electrodes: a binder-free approach, RSC Adv, 6, 43261, 10.1039/C6RA00670A Choudhary, 2015, Directly deposited MoS 2 thin film electrodes for high performance supercapacitors, J Mater Chem, 3, 24049, 10.1039/C5TA08095A Fang, 2017, Flower-like nanoarchitecture assembled from Bi 2 S 3 nanorod/MoS 2 nanosheet heterostructures for high-performance supercapacitor electrodes, Colloids Surfaces A Physicochem Eng Asp, 535, 41, 10.1016/j.colsurfa.2017.09.022 Huang, 2015, Synthesis of molybdenum disulfide/carbon aerogel composites for supercapacitors electrode material application, J Electroanal Chem, 752, 33, 10.1016/j.jelechem.2015.06.005 Yang, 2015, High-performance supercapacitor based on three-dimensional MoS2/graphene aerogel composites, Compos Sci Technol, 121, 123, 10.1016/j.compscitech.2015.11.004 Khawula, 2016, Symmetric pseudocapacitors based on molybdenum disulfide (MoS 2 )-modified carbon nanospheres: correlating physicochemistry and synergistic interaction on energy storage, J Mater Chem, 4, 6411, 10.1039/C6TA00114A Masikhwa, 2017, High performance asymmetric supercapacitor based on molybdenum disulphide/graphene foam and activated carbon from expanded graphite, J Colloid Interface Sci, 488, 155, 10.1016/j.jcis.2016.10.095 Wang, 2014, Ni3S2@MoS2 core/shell nanorod arrays on Ni foam for high-performance electrochemical energy storage, Nanomater Energy, 7, 151, 10.1016/j.nanoen.2014.04.019 Li, 2016, Hierarchical carbon@Ni 3 S 2 @MoS 2 double core–shell nanorods for high-performance supercapacitors, J Mater Chem, 4, 1319, 10.1039/C5TA08714G Luo, 2017, One-step extended strategy for the ionic liquid-assisted synthesis of Ni 3 S 4 –MoS 2 heterojunction electrodes for supercapacitors, J Mater Chem, 5, 11278, 10.1039/C7TA02268A Huang, 2017, One-step hydrothermal synthesis of Ni3S4@MoS2 nanosheet on carbon fiber paper as a binder-free anode for supercapacitor, J Mater Sci Mater Electron, 28, 12747, 10.1007/s10854-017-7100-6 Sha, 2016, 3D ternary nanocomposites of molybdenum disulfide/polyaniline/reduced graphene oxide aerogel for high performance supercapacitors, Carbon N Y, 99, 26, 10.1016/j.carbon.2015.11.066 Zhang, 2017, Synthesis of rambutan-like MoS 2/mesoporous carbon spheres nanocomposites with excellent performance for supercapacitors, Appl Surf Sci, 396, 994, 10.1016/j.apsusc.2016.11.074 Fu, 2017, Fabrication of 3D Spongia-shaped polyaniline/MoS2nanospheres composite assisted by polyvinylpyrrolidone (PVP) for high-performance supercapacitors, Synth Met, 224, 36, 10.1016/j.synthmet.2016.12.022 Chang, 2017, Layered MoS2/PPy nanotube composites with enhanced performance for supercapacitors, J Mater Sci Mater Electron, 28, 1777, 10.1007/s10854-016-5725-5 Ma, 2017, One-pot synthesis of hierarchical Bi 2 S 3 -MoS 2 nanosheet array with high electrochemical performance, J Power Sources, 342, 921, 10.1016/j.jpowsour.2017.01.020 Huang, 2014, Hydrothermal synthesis of molybdenum disulfide nanosheets as supercapacitors electrode material, Electrochim Acta, 132, 397, 10.1016/j.electacta.2014.04.007 Gao, 2016, A coaxial yarn electrode based on hierarchical MoS 2 nanosheets/carbon fiber tows for flexible solid-state supercapacitors, RSC Adv, 6, 57190, 10.1039/C6RA10178J Huang, 2017, Ultrahigh-performance pseudocapacitor based on phase-controlled synthesis of MoS 2 nanosheets decorated Ni 3 S 2 hybrid structure through annealing treatment, Appl Surf Sci, 425, 879, 10.1016/j.apsusc.2017.06.334 Mao, 2012, Nanostructured MnO 2/graphene composites for supercapacitor electrodes: the effect of morphology, crystallinity and composition, J Mater Chem, 22, 1845, 10.1039/C1JM14503G Huang, 2013, Synthesis of polyaniline/2-dimensional graphene analog MoS2composites for high-performance supercapacitor, Electrochim Acta, 109, 587, 10.1016/j.electacta.2013.07.168 Thakur, 2017, Facile synthesis and electrochemical evaluation of PANI/CNT/MoS 2 ternary composite as an electrode material for high performance supercapacitor, Mater Sci Eng B, 223, 24, 10.1016/j.mseb.2017.05.001 Ansari, 2017, Mechanically exfoliated MoS 2 sheet coupled with conductive polyaniline as a superior supercapacitor electrode material, J Colloid Interface Sci, 504, 276, 10.1016/j.jcis.2017.05.064 Wang, 2017, High-performance supercapacitor electrode based on a nanocomposite of polyaniline and chemically exfoliated MoS2 nanosheets, J Solid State Electrochem, 21, 2071, 10.1007/s10008-017-3536-0 Chen, 2017, In situ growth of polypyrrole onto three-dimensional tubular MoS2as an advanced negative electrode material for supercapacitor, Electrochim Acta, 246, 615, 10.1016/j.electacta.2017.06.102 Alamro, 2017, Polyethylenedioxythiophene and molybdenum disulfide nanocomposite electrodes for supercapacitor applications, Electrochim Acta, 235, 623, 10.1016/j.electacta.2017.03.102 Yang, 2016, Rational synthesis of carbon shell coated polyaniline/MoS2 monolayer composites for high-performance supercapacitors, Nano Res, 9, 951, 10.1007/s12274-016-0983-3 Tang, 2015, Growth of polypyrrole ultrathin films on MoS 2 monolayers as high-performance supercapacitor electrodes, Adv Mater, 27, 1117, 10.1002/adma.201404622 Mishra, 2018, Petal-like MoS 2 nanostructures with metallic 1 T phase for high performance supercapacitors, Curr Appl Phys, 18, 345, 10.1016/j.cap.2017.12.010 Xiao, 2017, Interlayer expanded molybdenum disulfide nanosheets assembly for electrochemical supercapacitor with enhanced performance, Mater Chem Phys, 192, 100, 10.1016/j.matchemphys.2017.01.077 Sun, 2017, Oxygen-incorporated MoS2 microspheres with tunable interiors as novel electrode materials for supercapacitors, J Power Sources, 352, 135, 10.1016/j.jpowsour.2017.03.123 Jia, 2017, Hierarchical nanosheet-based MoS 2/graphene nanobelts with high electrochemical energy storage performance, J Power Sources, 354, 1, 10.1016/j.jpowsour.2017.04.031 Sun, 2017, Graphene-wrapped CNT@MoS 2 hierarchical structure: synthesis, characterization and electrochemical application in supercapacitors, New J Chem, 41, 7142, 10.1039/C7NJ00623C Murugan, 2017, Synthesis and property studies of molybdenum disulfide modified reduced graphene oxide (MoS 2 -rGO) nanocomposites for supercapacitor applications, J Nanosci Nanotechnol, 17, 5469, 10.1166/jnn.2017.13845 Zhao, 2018, Facile construction of MoS2/RCF electrode for high-performance supercapacitor, Carbon N Y, 127, 699, 10.1016/j.carbon.2017.11.052 Han, 2018, Vertical crosslinking MoS 2/three-dimensional graphene composite towards high performance supercapacitor, Chin Chem Lett, 10.1016/j.cclet.2018.01.017 Luo, 2015, Aligned carbon nanotube/molybdenum disulfide hybrids for effective fibrous supercapacitors and lithium ion batteries, J Mater Chem, 3, 17553, 10.1039/C5TA04457J Huang, 2013, Layered MoS2–graphene composites for supercapacitor applications with enhanced capacitive performance, Int J Hydrogen Energy, 38, 14027, 10.1016/j.ijhydene.2013.08.112 Weng, 2015, Supercapacitive energy storage performance of molybdenum disulfi de nanosheets wrapped with microporous carbons, J Mater Chem A Mater Energy Sustain, 3, 3097, 10.1039/C4TA06303A Fan, 2015, Facile one-step hydrothermal preparation of molybdenum disulfide/carbon composite for use in supercapacitor, Int J Hydrogen Energy, 40, 10150, 10.1016/j.ijhydene.2015.06.061 Lamberti, 2018, Flexible supercapacitor electrodes based on MoS2-intercalated rGO membranes on Ti mesh, Mater Sci Semicond Process, 73, 106, 10.1016/j.mssp.2017.06.046 Cui, 2017, Dopamine adsorption precursor enables N-doped carbon sheathing of MoS2nanoflowers for all-around enhancement of supercapacitor performance, J Alloy Comp, 693, 955, 10.1016/j.jallcom.2016.09.173 Kumuthini, 2017, Electrochemical properties of electrospun MoS 2 @C nanofiber as electrode material for high-performance supercapacitor application, J Alloy Comp, 705, 624, 10.1016/j.jallcom.2017.02.163 Zhou, 2017, Hierarchical MoS2-coated three-dimensional graphene network for enhanced supercapacitor performances, J Power Sources, 352, 99, 10.1016/j.jpowsour.2017.03.134 Lee, 2017, Yolk–shell Polystyrene@Microporous organic network: a smart template with thermally disassemblable yolk to engineer hollow MoS 2/C composites for high-performance supercapacitors, ACS Omega, 2, 7658, 10.1021/acsomega.7b01426 Awasthi, 2018, Layer – structured partially reduced graphene oxide sheathed mesoporous MoS 2 particles for energy storage applications, J Colloid Interface Sci, 518, 234, 10.1016/j.jcis.2018.02.043 Liu, 2018, Synthesis of dense MoS 2 nanosheet layers on hollow carbon spheres and their applications in supercapacitors and the electrochemical hydrogen evolution reaction, Inorg Chem Front Luo, 2018, One-pot synthesis of highly stable carbon–MoS 2 nanosphere electrodes using a co-growth mechanism for supercapacitors, New J Chem, 42, 10111, 10.1039/C8NJ01387J Dutta, 2018, MoS 2 nanosheet/rgo hybrid: an electrode material for high performance thin film supercapacitor, Mater Today Proc, 5, 9771, 10.1016/j.matpr.2017.10.165 Zhao, 2017, Alternately stacked metallic 1T-MoS 2/polyaniline heterostructure for high-performance supercapacitors, Chem Eng J, 330, 462, 10.1016/j.cej.2017.07.129 Wang, 2017, Design and fabrication of macroporous polyaniline nanorods@graphene-like MoS2 nanocomposite with high electrochemical performance for supercapacitors, J Alloy Comp, 699, 176, 10.1016/j.jallcom.2016.12.344 Lian, 2017, Hydrothermal synthesis of Polypyrrole/MoS 2 intercalation composites for supercapacitor electrodes, Ceram Int, 43, 9877, 10.1016/j.ceramint.2017.04.171 Raghu, 2018, Fabrication of polyaniline–few-layer MoS2 nanocomposite for high energy density supercapacitors, Polym Bull, 10.1007/s00289-017-2267-9 Fang, 2018, Three-dimensional flower-like MoS2-CoSe2heterostructure for high performance superccapacitors, J Colloid Interface Sci, 512, 282, 10.1016/j.jcis.2017.10.072 Wang, 2017, General solution-processed formation of porous transition-metal oxides on exfoliated molybdenum disulfides for high-performance asymmetric supercapacitors, J Mater Chem, 5, 11236, 10.1039/C7TA01457K Wang, 2016, Hierarchically layered MoS 2/Mn 3 O 4 hybrid architectures for electrochemical supercapacitors with enhanced performance, Electrochim Acta, 209, 389, 10.1016/j.electacta.2016.05.078 Gong, 2018, Preparation and supercapacitive property of molybdenum disulfide (MoS 2 ) nanoflake arrays- tungsten trioxide (WO 3 ) nanorod arrays composite heterojunction: a synergistic effect of one-dimensional and two-dimensional nanomaterials, Electrochim Acta, 263, 409, 10.1016/j.electacta.2018.01.072 Yang, 2017, Arrays of hierarchical nickel sul fi des/MoS 2 nanosheets supported on carbon nanotubes backbone as advanced anode materials for asymmetric supercapacitor, J Power Sources, 343, 373, 10.1016/j.jpowsour.2017.01.078 Zhao, 2017, Facile preparation of NiFe2O4/MoS2 composite material with synergistic effect for high performance supercapacitor, J Alloy Comp, 726, 608, 10.1016/j.jallcom.2017.07.327 Haupt, 2014, Comparative kinetics of damage to the plasma and mitochondrial membranes by intra-cellularly synthesized and externally-provided photosensitizers using multi-color FACS, Photochem Photobiol Sci, 13, 38, 10.1039/C3PP50189B Nandi, 2017, Highly uniform atomic layer-deposited MoS 2 @3D-Ni-foam: a novel approach to prepare an electrode for supercapacitors, ACS Appl Mater Interfaces, 9, 40252, 10.1021/acsami.7b12248 Wu, 2017, Silver wrapped MoS 2 hybrid electrode materials for high-performance supercapacitor, J Alloy Comp, 708, 763, 10.1016/j.jallcom.2017.03.048 Wang, 2017, Supercapacitor performances of the MoS2/CoS2Nanotube Arrays in situ grown on Ti plate, J Phys Chem C, 121, 9089, 10.1021/acs.jpcc.6b13026 Wang, 2017, Titanium plate supported MoS2nanosheet arrays for supercapacitor application, Appl Surf Sci, 396, 1466, 10.1016/j.apsusc.2016.11.193 Gao, 2018, MoS 2 nanosheets assembling three-dimensional nanospheres for enhanced-performance supercapacitor, J Alloy Comp, 741, 174, 10.1016/j.jallcom.2018.01.110 Huang, 2018, One-step hydrothermal synthesis of a CoS 2 @MoS 2 nanocomposite for high-performance supercapacitors, J Alloy Comp, 742, 844, 10.1016/j.jallcom.2018.01.324 Li, 2019, Cladding nanostructured AgNWs-MoS 2 electrode material for high-rate and long-life transparent in-plane micro-supercapacitor, Energy Storage Mater, 16, 212, 10.1016/j.ensm.2018.05.013 Zhang, 2018, Novel ternary nanocomposites of MWCNTs/PANI/MoS 2 : preparation, characterization and enhanced electrochemical capacitance, R Soc Open Sci, 5, 171365, 10.1098/rsos.171365 Sun, 2015, Hybrid fibers made of molybdenum disulfide, reduced graphene oxide, and multi-walled carbon nanotubes for solid-state, flexible, asymmetric supercapacitors, Angew Chem Int Ed, 54, 4651, 10.1002/anie.201411533 Sarno, 2017, Supercapacitors based on high surface area MoS 2 and MoS 2 –Fe 3 O 4 nanostructures supported on physical exfoliated graphite, J Nanosci Nanotechnol, 17, 3735, 10.1166/jnn.2017.14015 Majumder, 2017, Gravimetric and volumetric capacitive performance of polyindole/carbon black/MoS 2 hybrid electrode material for supercapacitor applications, Electrochim Acta, 248, 98, 10.1016/j.electacta.2017.07.107 Wang, 2017, Three-dimensional MoS2@CNT/RGO network composites for high-performance flexible supercapacitors, Chem Eur J, 23, 3438, 10.1002/chem.201605465 Wen, 2018, Hierarchical MoS 2 nanowires/NiCo 2 O 4 nanosheets supported on Ni foam for high-performance asymmetric supercapacitors, Appl Surf Sci, 428, 616, 10.1016/j.apsusc.2017.09.189 Wang, 2018, Kelp-like structured NiCo 2 S 4 -C-MoS 2 composite electrodes for high performance supercapacitor, J Alloy Comp, 735, 1505, 10.1016/j.jallcom.2017.11.249 Sari, 2018, MoS 2/MoO x -Nanostructure-Decorated activated carbon cloth for enhanced supercapacitor performance, ChemSusChem, 11, 897, 10.1002/cssc.201702295 Qin, 2018, MoS2/Ni3S4composite nanosheets on interconnected carbon shells as an excellent supercapacitor electrode architecture for long term cycling at high current densities, Appl Surf Sci, 440, 741, 10.1016/j.apsusc.2018.01.266 Lin, 2018, Ternary composite nanosheets with MoS 2/WS 2/graphene heterostructures as high-performance cathode materials for supercapacitors, ChemElectroChem, 10.1002/celc.201800043 Palsaniya, 2018, Synthesis of polyaniline/graphene/MoS 2 nanocomposite for high performance supercapacitor electrode, Polymer, 150, 150, 10.1016/j.polymer.2018.07.018 Hou, 2018, Metal organic framework derived core–shell structured Co 9 S 8 @N–C@MoS 2 nanocubes for supercapacitor, ACS Appl Energy Mater, 1, 3513, 10.1021/acsaem.8b00773 Chao, 2018, Sandwiched MoS 2/polyaniline nanosheets array vertically aligned on reduced graphene oxide for high performance supercapacitors, Electrochim Acta, 270, 387, 10.1016/j.electacta.2018.03.072