Synergistic properties of molybdenum disulfide (MoS2) with electro-active materials for high-performance supercapacitors
Tài liệu tham khảo
Winter, 2004, What are batteries, fuel cells, and supercapacitors?, Chem Rev, 104, 4245, 10.1021/cr020730k
Zhang, 2009, Carbon-based materials as supercapacitor electrodes, Chem Soc Rev, 38, 2520, 10.1039/b813846j
Xiong, 2014, A review of graphene-based electrochemical microsupercapacitors, Electroanalysis, 26, 30, 10.1002/elan.201300238
Burke, 2000, Ultracapacitors: why, how, and where is the technology, J Power Sources, 91, 37, 10.1016/S0378-7753(00)00485-7
Miller, 2008, Materials science: electrochemical capacitors for energy management, Science, 321, 651, 10.1126/science.1158736
Yu, 2015, Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions, Energy Environ Sci, 8, 702, 10.1039/C4EE03229B
SIMON, 2009, 320
Conway, 1999
Wang, 2012, A review of electrode materials for electrochemical supercapacitors, Chem Soc Rev, 41, 797, 10.1039/C1CS15060J
Zhi, 2013, Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review, Nanoscale, 5, 72, 10.1039/C2NR32040A
Liu, 2013, Preparation of activated carbon aerogels with hierarchically porous structures for electrical double layer capacitors, Electrochim Acta, 89, 571, 10.1016/j.electacta.2012.11.033
Zheng, 2012, Hierarchical carbon nanotube membrane with high packing density and tunable porous structure for high voltage supercapacitors, Carbon N Y, 50, 5167, 10.1016/j.carbon.2012.06.058
Staaf, 2014, Present and future supercapacitor carbon electrode materials for improved energy storage used in intelligent wireless sensor systems, Nanomater Energy, 9, 128, 10.1016/j.nanoen.2014.06.028
McArthur, 2018, A binder-free Ir 0.4 Ru 0.6 -oxide/functionalized multi-walled carbon nanotube electrode for possible applications in supercapacitors, Can J Chem Eng, 96, 74, 10.1002/cjce.22837
Snook, 2011, Conducting-polymer-based supercapacitor devices and electrodes, J Power Sources, 196, 1, 10.1016/j.jpowsour.2010.06.084
Ryu, 2002, Symmetric redox supercapacitor with conducting polyaniline electrodes, J Power Sources, 103, 305, 10.1016/S0378-7753(01)00862-X
Gómez-Romero, 2003, Hybrid organic–inorganic nanocomposite materials for application in solid state electrochemical supercapacitors, Electrochem Commun, 5, 149, 10.1016/S1388-2481(03)00010-9
Suematsu, 2000, Conducting polymer films of cross-linked structure and their QCM analysis, Electrochim Acta, 45, 3813, 10.1016/S0013-4686(00)00466-7
Snook, 2008, The measurement of specific capacitances of conducting polymers using the quartz crystal microbalance, J Electroanal Chem, 612, 140, 10.1016/j.jelechem.2007.08.024
Lee, 2016, Synthesis of cobalt oxide-manganese oxide on activated carbon electrodes for electrochemical capacitor application using a liquid phase plasma method, Int J Hydrogen Energy, 41, 7582, 10.1016/j.ijhydene.2016.02.011
Zheng, 1995, Hydrous ruthenium oxide as an electrode material for electrochemical capacitors, J Electrochem Soc, 142, 2699, 10.1149/1.2050077
Karade, 2016, MoS 2 ultrathin nanoflakes for high performance supercapacitors: room temperature chemical bath deposition (CBD), RSC Adv, 6, 39159, 10.1039/C6RA04441G
Zhang, 2017, A review of recent progress in molybdenum disulfide-based supercapacitors and batteries, Inorg Chem Front, 4, 1602, 10.1039/C7QI00515F
Kumar, 2015, Graphene and molybdenum disulfide hybrids: synthesis and applications, Mater Today, 18, 286, 10.1016/j.mattod.2015.01.016
Wang, 2017, MoS2-Based nanocomposites for electrochemical energy storage, Adv Sci, 4, 1600289, 10.1002/advs.201600289
Kumar, 2018, Recent advances in two-dimensional nanomaterials for supercapacitor electrode applications, ACS Energy Lett, 3, 482, 10.1021/acsenergylett.7b01169
Wang, 2017, MoS 2/polymer nanocomposites: preparation, properties, and applications, Polym Rev, 57, 440, 10.1080/15583724.2017.1309662
Huang, 2015, Synthesis of reduced graphene oxide wrapped-copper sulfide hollow spheres as electrode material for supercapacitor, Int J Hydrogen Energy, 40, 10158, 10.1016/j.ijhydene.2015.05.152
Fan, 2018, Synthesis of CuCo2S4 nanosheet arrays on Ni foam as binder-free electrode for asymmetric supercapacitor, Int J Hydrogen Energy, 43, 23372, 10.1016/j.ijhydene.2018.10.190
Gao, 2017, Two-dimensional transition metal diseleniums for energy storage application: a review of recent developments, CrystEngComm, 19, 404, 10.1039/C6CE02223E
Hu, 2014, Three-dimensional cross-linked carbon network wrapped with ordered polyaniline nanowires for high-performance pseudo-supercapacitors, J Power Sources, 268, 451, 10.1016/j.jpowsour.2014.06.074
Sharma, 2010, A review on electrochemical double-layer capacitors, Energy Convers Manag, 51, 2901, 10.1016/j.enconman.2010.06.031
Sharma, 2008, Manganese oxide embedded polypyrrole nanocomposites for electrochemical supercapacitor, Electrochim Acta, 53, 7690, 10.1016/j.electacta.2008.04.028
Fan, 2007, High electroactivity of polyaniline in supercapacitors by using a hierarchically porous carbon monolith as a support, Adv Funct Mater, 17, 3083, 10.1002/adfm.200700518
Ullah, 2015, Iridium-ruthenium-oxide coatings for supercapacitors, Can J Chem Eng, 93, 1941, 10.1002/cjce.22318
Hsieh, 2008, Investigation on capacity fading of aqueous MnO2 nH2O electrochemical capacitor, J Power Sources, 177, 660, 10.1016/j.jpowsour.2007.11.026
Zheng, 2010, Multilayered films of cobalt oxyhydroxide nanowires/manganese oxide nanosheets for electrochemical capacitor, J Power Sources, 195, 680, 10.1016/j.jpowsour.2009.08.002
Brousse, 2006, Crystalline MnO2 as possible alternative to amorphous compounds in electrochemical supercapacitors, J Electrochem Soc, 153, A2171, 10.1149/1.2352197
Chen, 2009, Hydrothermal preparation of octadecahedron Fe3O4 thin film for use in an electrochemical supercapacitor, Electrochim Acta, 55, 1, 10.1016/j.electacta.2009.04.017
Wu, 2007, Electrodeposition of nanoporous nickel oxide film for electrochemical capacitors, Int J Hydrogen Energy, 32, 4153, 10.1016/j.ijhydene.2007.06.001
Daud, 2016, Graphene/layered double hydroxides nanocomposites: a review of recent progress in synthesis and applications, Carbon N Y, 104, 241, 10.1016/j.carbon.2016.03.057
Cai, 2015, Solvothermal synthesis of NiCo-layered double hydroxide nanosheets decorated on RGO sheets for high performance supercapacitor, Chem Eng J, 268, 251, 10.1016/j.cej.2015.01.072
Fang, 2013, Synthesis and electrochemical performance of graphene-like WS 2, Chem Eur J, 19, 5694, 10.1002/chem.201204254
Mortazavi, 2014, Ab initio characterization of layered MoS2 as anode for sodium-ion batteries, J Power Sources, 268, 279, 10.1016/j.jpowsour.2014.06.049
Sen, 2013, High-rate and high-energy-density lithium-ion battery anode containing 2D MoS 2 nanowall and cellulose binder, ACS Appl Mater Interfaces, 5, 1240, 10.1021/am3022015
Zhang, 2015, Constructing highly oriented configuration by few-layer MoS 2 : toward high-performance lithium-ion batteries and hydrogen evolution reactions, ACS Nano, 9, 12464, 10.1021/acsnano.5b05891
Deng, 2017, 3D ordered macroporous MoS 2 @C nanostructure for flexible Li-ion batteries, Adv Mater, 29, 1603020, 10.1002/adma.201603020
Wang, 2017, Recent advances in transition-metal dichalcogenides based electrochemical biosensors: a review, Biosens Bioelectron, 97, 305, 10.1016/j.bios.2017.06.011
Chen, 2018, A sandwich-type electrochemical biosensing platform for microRNA-21 detection using carbon sphere-MoS 2 and catalyzed hairpin assembly for signal amplification, Sensor Actuator B Chem, 270, 179, 10.1016/j.snb.2018.05.031
Liang, 2014, Effect of MoS2 on hydrogenation storage properties of LiBH4, J Solid State Chem, 211, 21, 10.1016/j.jssc.2013.11.041
Han, 2018, Novel application of MgH2/MoS2 hydrogen storage materials to thiophene hydrodesulfurization: a combined experimental and theoretical case study, Mater Des, 158, 213, 10.1016/j.matdes.2018.08.036
Pan, 2018, Role of S-S interlayer spacing on the hydrogen storage mechanism of MoS 2, Int J Hydrogen Energy, 43, 3087, 10.1016/j.ijhydene.2017.12.185
Qin, 2018, Efficient hydrogen evolution and rapid degradation of organic pollutants by robust catalysts of MoS2/TNT@CNTs, Int J Hydrogen Energy, 43, 16024, 10.1016/j.ijhydene.2018.07.051
Huang, 2019, Hierarchical MoS2 nanosheets integrated Ti3C2 MXenes for electrocatalytic hydrogen evolution, Int J Hydrogen Energy, 44, 965, 10.1016/j.ijhydene.2018.11.084
Feng, 2018, MoS2 supported on MOF-derived carbon with core-shell structure as efficient electrocatalysts for hydrogen evolution reaction, Int J Hydrogen Energy, 43, 20538, 10.1016/j.ijhydene.2018.09.057
Wang, 2014, High-performance sodium-ion batteries and sodium-ion pseudocapacitors based on MoS2/graphene composites, Chem Eur J, 20, 9607, 10.1002/chem.201402563
Patil, 2016, Fabrication of ultra-high energy and power asymmetric supercapacitors based on hybrid 2D MoS 2/graphene oxide composite electrodes: a binder-free approach, RSC Adv, 6, 43261, 10.1039/C6RA00670A
Choudhary, 2015, Directly deposited MoS 2 thin film electrodes for high performance supercapacitors, J Mater Chem, 3, 24049, 10.1039/C5TA08095A
Fang, 2017, Flower-like nanoarchitecture assembled from Bi 2 S 3 nanorod/MoS 2 nanosheet heterostructures for high-performance supercapacitor electrodes, Colloids Surfaces A Physicochem Eng Asp, 535, 41, 10.1016/j.colsurfa.2017.09.022
Huang, 2015, Synthesis of molybdenum disulfide/carbon aerogel composites for supercapacitors electrode material application, J Electroanal Chem, 752, 33, 10.1016/j.jelechem.2015.06.005
Yang, 2015, High-performance supercapacitor based on three-dimensional MoS2/graphene aerogel composites, Compos Sci Technol, 121, 123, 10.1016/j.compscitech.2015.11.004
Khawula, 2016, Symmetric pseudocapacitors based on molybdenum disulfide (MoS 2 )-modified carbon nanospheres: correlating physicochemistry and synergistic interaction on energy storage, J Mater Chem, 4, 6411, 10.1039/C6TA00114A
Masikhwa, 2017, High performance asymmetric supercapacitor based on molybdenum disulphide/graphene foam and activated carbon from expanded graphite, J Colloid Interface Sci, 488, 155, 10.1016/j.jcis.2016.10.095
Wang, 2014, Ni3S2@MoS2 core/shell nanorod arrays on Ni foam for high-performance electrochemical energy storage, Nanomater Energy, 7, 151, 10.1016/j.nanoen.2014.04.019
Li, 2016, Hierarchical carbon@Ni 3 S 2 @MoS 2 double core–shell nanorods for high-performance supercapacitors, J Mater Chem, 4, 1319, 10.1039/C5TA08714G
Luo, 2017, One-step extended strategy for the ionic liquid-assisted synthesis of Ni 3 S 4 –MoS 2 heterojunction electrodes for supercapacitors, J Mater Chem, 5, 11278, 10.1039/C7TA02268A
Huang, 2017, One-step hydrothermal synthesis of Ni3S4@MoS2 nanosheet on carbon fiber paper as a binder-free anode for supercapacitor, J Mater Sci Mater Electron, 28, 12747, 10.1007/s10854-017-7100-6
Sha, 2016, 3D ternary nanocomposites of molybdenum disulfide/polyaniline/reduced graphene oxide aerogel for high performance supercapacitors, Carbon N Y, 99, 26, 10.1016/j.carbon.2015.11.066
Zhang, 2017, Synthesis of rambutan-like MoS 2/mesoporous carbon spheres nanocomposites with excellent performance for supercapacitors, Appl Surf Sci, 396, 994, 10.1016/j.apsusc.2016.11.074
Fu, 2017, Fabrication of 3D Spongia-shaped polyaniline/MoS2nanospheres composite assisted by polyvinylpyrrolidone (PVP) for high-performance supercapacitors, Synth Met, 224, 36, 10.1016/j.synthmet.2016.12.022
Chang, 2017, Layered MoS2/PPy nanotube composites with enhanced performance for supercapacitors, J Mater Sci Mater Electron, 28, 1777, 10.1007/s10854-016-5725-5
Ma, 2017, One-pot synthesis of hierarchical Bi 2 S 3 -MoS 2 nanosheet array with high electrochemical performance, J Power Sources, 342, 921, 10.1016/j.jpowsour.2017.01.020
Huang, 2014, Hydrothermal synthesis of molybdenum disulfide nanosheets as supercapacitors electrode material, Electrochim Acta, 132, 397, 10.1016/j.electacta.2014.04.007
Gao, 2016, A coaxial yarn electrode based on hierarchical MoS 2 nanosheets/carbon fiber tows for flexible solid-state supercapacitors, RSC Adv, 6, 57190, 10.1039/C6RA10178J
Huang, 2017, Ultrahigh-performance pseudocapacitor based on phase-controlled synthesis of MoS 2 nanosheets decorated Ni 3 S 2 hybrid structure through annealing treatment, Appl Surf Sci, 425, 879, 10.1016/j.apsusc.2017.06.334
Mao, 2012, Nanostructured MnO 2/graphene composites for supercapacitor electrodes: the effect of morphology, crystallinity and composition, J Mater Chem, 22, 1845, 10.1039/C1JM14503G
Huang, 2013, Synthesis of polyaniline/2-dimensional graphene analog MoS2composites for high-performance supercapacitor, Electrochim Acta, 109, 587, 10.1016/j.electacta.2013.07.168
Thakur, 2017, Facile synthesis and electrochemical evaluation of PANI/CNT/MoS 2 ternary composite as an electrode material for high performance supercapacitor, Mater Sci Eng B, 223, 24, 10.1016/j.mseb.2017.05.001
Ansari, 2017, Mechanically exfoliated MoS 2 sheet coupled with conductive polyaniline as a superior supercapacitor electrode material, J Colloid Interface Sci, 504, 276, 10.1016/j.jcis.2017.05.064
Wang, 2017, High-performance supercapacitor electrode based on a nanocomposite of polyaniline and chemically exfoliated MoS2 nanosheets, J Solid State Electrochem, 21, 2071, 10.1007/s10008-017-3536-0
Chen, 2017, In situ growth of polypyrrole onto three-dimensional tubular MoS2as an advanced negative electrode material for supercapacitor, Electrochim Acta, 246, 615, 10.1016/j.electacta.2017.06.102
Alamro, 2017, Polyethylenedioxythiophene and molybdenum disulfide nanocomposite electrodes for supercapacitor applications, Electrochim Acta, 235, 623, 10.1016/j.electacta.2017.03.102
Yang, 2016, Rational synthesis of carbon shell coated polyaniline/MoS2 monolayer composites for high-performance supercapacitors, Nano Res, 9, 951, 10.1007/s12274-016-0983-3
Tang, 2015, Growth of polypyrrole ultrathin films on MoS 2 monolayers as high-performance supercapacitor electrodes, Adv Mater, 27, 1117, 10.1002/adma.201404622
Mishra, 2018, Petal-like MoS 2 nanostructures with metallic 1 T phase for high performance supercapacitors, Curr Appl Phys, 18, 345, 10.1016/j.cap.2017.12.010
Xiao, 2017, Interlayer expanded molybdenum disulfide nanosheets assembly for electrochemical supercapacitor with enhanced performance, Mater Chem Phys, 192, 100, 10.1016/j.matchemphys.2017.01.077
Sun, 2017, Oxygen-incorporated MoS2 microspheres with tunable interiors as novel electrode materials for supercapacitors, J Power Sources, 352, 135, 10.1016/j.jpowsour.2017.03.123
Jia, 2017, Hierarchical nanosheet-based MoS 2/graphene nanobelts with high electrochemical energy storage performance, J Power Sources, 354, 1, 10.1016/j.jpowsour.2017.04.031
Sun, 2017, Graphene-wrapped CNT@MoS 2 hierarchical structure: synthesis, characterization and electrochemical application in supercapacitors, New J Chem, 41, 7142, 10.1039/C7NJ00623C
Murugan, 2017, Synthesis and property studies of molybdenum disulfide modified reduced graphene oxide (MoS 2 -rGO) nanocomposites for supercapacitor applications, J Nanosci Nanotechnol, 17, 5469, 10.1166/jnn.2017.13845
Zhao, 2018, Facile construction of MoS2/RCF electrode for high-performance supercapacitor, Carbon N Y, 127, 699, 10.1016/j.carbon.2017.11.052
Han, 2018, Vertical crosslinking MoS 2/three-dimensional graphene composite towards high performance supercapacitor, Chin Chem Lett, 10.1016/j.cclet.2018.01.017
Luo, 2015, Aligned carbon nanotube/molybdenum disulfide hybrids for effective fibrous supercapacitors and lithium ion batteries, J Mater Chem, 3, 17553, 10.1039/C5TA04457J
Huang, 2013, Layered MoS2–graphene composites for supercapacitor applications with enhanced capacitive performance, Int J Hydrogen Energy, 38, 14027, 10.1016/j.ijhydene.2013.08.112
Weng, 2015, Supercapacitive energy storage performance of molybdenum disulfi de nanosheets wrapped with microporous carbons, J Mater Chem A Mater Energy Sustain, 3, 3097, 10.1039/C4TA06303A
Fan, 2015, Facile one-step hydrothermal preparation of molybdenum disulfide/carbon composite for use in supercapacitor, Int J Hydrogen Energy, 40, 10150, 10.1016/j.ijhydene.2015.06.061
Lamberti, 2018, Flexible supercapacitor electrodes based on MoS2-intercalated rGO membranes on Ti mesh, Mater Sci Semicond Process, 73, 106, 10.1016/j.mssp.2017.06.046
Cui, 2017, Dopamine adsorption precursor enables N-doped carbon sheathing of MoS2nanoflowers for all-around enhancement of supercapacitor performance, J Alloy Comp, 693, 955, 10.1016/j.jallcom.2016.09.173
Kumuthini, 2017, Electrochemical properties of electrospun MoS 2 @C nanofiber as electrode material for high-performance supercapacitor application, J Alloy Comp, 705, 624, 10.1016/j.jallcom.2017.02.163
Zhou, 2017, Hierarchical MoS2-coated three-dimensional graphene network for enhanced supercapacitor performances, J Power Sources, 352, 99, 10.1016/j.jpowsour.2017.03.134
Lee, 2017, Yolk–shell Polystyrene@Microporous organic network: a smart template with thermally disassemblable yolk to engineer hollow MoS 2/C composites for high-performance supercapacitors, ACS Omega, 2, 7658, 10.1021/acsomega.7b01426
Awasthi, 2018, Layer – structured partially reduced graphene oxide sheathed mesoporous MoS 2 particles for energy storage applications, J Colloid Interface Sci, 518, 234, 10.1016/j.jcis.2018.02.043
Liu, 2018, Synthesis of dense MoS 2 nanosheet layers on hollow carbon spheres and their applications in supercapacitors and the electrochemical hydrogen evolution reaction, Inorg Chem Front
Luo, 2018, One-pot synthesis of highly stable carbon–MoS 2 nanosphere electrodes using a co-growth mechanism for supercapacitors, New J Chem, 42, 10111, 10.1039/C8NJ01387J
Dutta, 2018, MoS 2 nanosheet/rgo hybrid: an electrode material for high performance thin film supercapacitor, Mater Today Proc, 5, 9771, 10.1016/j.matpr.2017.10.165
Zhao, 2017, Alternately stacked metallic 1T-MoS 2/polyaniline heterostructure for high-performance supercapacitors, Chem Eng J, 330, 462, 10.1016/j.cej.2017.07.129
Wang, 2017, Design and fabrication of macroporous polyaniline nanorods@graphene-like MoS2 nanocomposite with high electrochemical performance for supercapacitors, J Alloy Comp, 699, 176, 10.1016/j.jallcom.2016.12.344
Lian, 2017, Hydrothermal synthesis of Polypyrrole/MoS 2 intercalation composites for supercapacitor electrodes, Ceram Int, 43, 9877, 10.1016/j.ceramint.2017.04.171
Raghu, 2018, Fabrication of polyaniline–few-layer MoS2 nanocomposite for high energy density supercapacitors, Polym Bull, 10.1007/s00289-017-2267-9
Fang, 2018, Three-dimensional flower-like MoS2-CoSe2heterostructure for high performance superccapacitors, J Colloid Interface Sci, 512, 282, 10.1016/j.jcis.2017.10.072
Wang, 2017, General solution-processed formation of porous transition-metal oxides on exfoliated molybdenum disulfides for high-performance asymmetric supercapacitors, J Mater Chem, 5, 11236, 10.1039/C7TA01457K
Wang, 2016, Hierarchically layered MoS 2/Mn 3 O 4 hybrid architectures for electrochemical supercapacitors with enhanced performance, Electrochim Acta, 209, 389, 10.1016/j.electacta.2016.05.078
Gong, 2018, Preparation and supercapacitive property of molybdenum disulfide (MoS 2 ) nanoflake arrays- tungsten trioxide (WO 3 ) nanorod arrays composite heterojunction: a synergistic effect of one-dimensional and two-dimensional nanomaterials, Electrochim Acta, 263, 409, 10.1016/j.electacta.2018.01.072
Yang, 2017, Arrays of hierarchical nickel sul fi des/MoS 2 nanosheets supported on carbon nanotubes backbone as advanced anode materials for asymmetric supercapacitor, J Power Sources, 343, 373, 10.1016/j.jpowsour.2017.01.078
Zhao, 2017, Facile preparation of NiFe2O4/MoS2 composite material with synergistic effect for high performance supercapacitor, J Alloy Comp, 726, 608, 10.1016/j.jallcom.2017.07.327
Haupt, 2014, Comparative kinetics of damage to the plasma and mitochondrial membranes by intra-cellularly synthesized and externally-provided photosensitizers using multi-color FACS, Photochem Photobiol Sci, 13, 38, 10.1039/C3PP50189B
Nandi, 2017, Highly uniform atomic layer-deposited MoS 2 @3D-Ni-foam: a novel approach to prepare an electrode for supercapacitors, ACS Appl Mater Interfaces, 9, 40252, 10.1021/acsami.7b12248
Wu, 2017, Silver wrapped MoS 2 hybrid electrode materials for high-performance supercapacitor, J Alloy Comp, 708, 763, 10.1016/j.jallcom.2017.03.048
Wang, 2017, Supercapacitor performances of the MoS2/CoS2Nanotube Arrays in situ grown on Ti plate, J Phys Chem C, 121, 9089, 10.1021/acs.jpcc.6b13026
Wang, 2017, Titanium plate supported MoS2nanosheet arrays for supercapacitor application, Appl Surf Sci, 396, 1466, 10.1016/j.apsusc.2016.11.193
Gao, 2018, MoS 2 nanosheets assembling three-dimensional nanospheres for enhanced-performance supercapacitor, J Alloy Comp, 741, 174, 10.1016/j.jallcom.2018.01.110
Huang, 2018, One-step hydrothermal synthesis of a CoS 2 @MoS 2 nanocomposite for high-performance supercapacitors, J Alloy Comp, 742, 844, 10.1016/j.jallcom.2018.01.324
Li, 2019, Cladding nanostructured AgNWs-MoS 2 electrode material for high-rate and long-life transparent in-plane micro-supercapacitor, Energy Storage Mater, 16, 212, 10.1016/j.ensm.2018.05.013
Zhang, 2018, Novel ternary nanocomposites of MWCNTs/PANI/MoS 2 : preparation, characterization and enhanced electrochemical capacitance, R Soc Open Sci, 5, 171365, 10.1098/rsos.171365
Sun, 2015, Hybrid fibers made of molybdenum disulfide, reduced graphene oxide, and multi-walled carbon nanotubes for solid-state, flexible, asymmetric supercapacitors, Angew Chem Int Ed, 54, 4651, 10.1002/anie.201411533
Sarno, 2017, Supercapacitors based on high surface area MoS 2 and MoS 2 –Fe 3 O 4 nanostructures supported on physical exfoliated graphite, J Nanosci Nanotechnol, 17, 3735, 10.1166/jnn.2017.14015
Majumder, 2017, Gravimetric and volumetric capacitive performance of polyindole/carbon black/MoS 2 hybrid electrode material for supercapacitor applications, Electrochim Acta, 248, 98, 10.1016/j.electacta.2017.07.107
Wang, 2017, Three-dimensional MoS2@CNT/RGO network composites for high-performance flexible supercapacitors, Chem Eur J, 23, 3438, 10.1002/chem.201605465
Wen, 2018, Hierarchical MoS 2 nanowires/NiCo 2 O 4 nanosheets supported on Ni foam for high-performance asymmetric supercapacitors, Appl Surf Sci, 428, 616, 10.1016/j.apsusc.2017.09.189
Wang, 2018, Kelp-like structured NiCo 2 S 4 -C-MoS 2 composite electrodes for high performance supercapacitor, J Alloy Comp, 735, 1505, 10.1016/j.jallcom.2017.11.249
Sari, 2018, MoS 2/MoO x -Nanostructure-Decorated activated carbon cloth for enhanced supercapacitor performance, ChemSusChem, 11, 897, 10.1002/cssc.201702295
Qin, 2018, MoS2/Ni3S4composite nanosheets on interconnected carbon shells as an excellent supercapacitor electrode architecture for long term cycling at high current densities, Appl Surf Sci, 440, 741, 10.1016/j.apsusc.2018.01.266
Lin, 2018, Ternary composite nanosheets with MoS 2/WS 2/graphene heterostructures as high-performance cathode materials for supercapacitors, ChemElectroChem, 10.1002/celc.201800043
Palsaniya, 2018, Synthesis of polyaniline/graphene/MoS 2 nanocomposite for high performance supercapacitor electrode, Polymer, 150, 150, 10.1016/j.polymer.2018.07.018
Hou, 2018, Metal organic framework derived core–shell structured Co 9 S 8 @N–C@MoS 2 nanocubes for supercapacitor, ACS Appl Energy Mater, 1, 3513, 10.1021/acsaem.8b00773
Chao, 2018, Sandwiched MoS 2/polyaniline nanosheets array vertically aligned on reduced graphene oxide for high performance supercapacitors, Electrochim Acta, 270, 387, 10.1016/j.electacta.2018.03.072
