Pesting of the high-temperature intermetallic MoSi2

JOM - Tập 45 - Trang 15-21 - 1993
T. C. Chou1, T. G. Nieh2
1BOC Group Technical Center, Murray Hill, USA
2Chemistry and Materials Science Department, Lawrence Livermore National Laboratory, USA

Tóm tắt

Degradation resulting from environmental effects on the properties of high-temperature intermetallics has recently stimulated much interest in the materials science community. Most notably, iron, nickel, and titanium aluminides were found to be more ductile at room temperature when tested in vacuum or dry oxygen as compared to laboratory air. Environmental oxidation can also degrade materials to a measurable, sometimes catastrophic, extent. For example, an important oxidation-induced degradation phenomenon observed in intermetallics is pest disintegration. It was first observed in molybdenum disilicide in 1955. Since then, pest disintegration has been reported in many intermetallics, including silicides, aluminides, and beryllides. This article examines the pesting of MoSi2 and presents kinetic processes responsible for pesting.

Tài liệu tham khảo

Von E. Fitzer, “Molybdenum Disilicide as High-Temperature Material,” Plansee Proc., 2nd Seminar, Reutte/Tyrol (1955), pp. 56–79. A.K. Vasudevan and J.J. Petrovic, eds. “High Temperature Structural Suicides” (New York: Elsevier Science Publishers, 1992). J.J. Rausch, ARF 2981-4, Armour Research Foundation (August 31, 1961), NSA 15–31171. E.A. Aitken, Intermetallic Compounds, ed. J.H. Westbrook (New York: John Wiley & Sons, Inc., 1967), pp. 491–516. J. Schilichting, High Temperature-High Pressure, 10 (1978), p. 241. A.W. Searcy, J. Am. Ceram. Soc., 40 (1957), p. 431. J.B. Berkowitz-Mattuck and R.R. Dils, J. Electrochem. Soc., 112 (1965), p. 583. C.D. Wirkus and D.R. Wilder, J. Am. Ceram. Soc., 49 (1966), p. 173. V.A. Lavrenko, V.Z. Shemet, and A.V. Goncharuk, Thermochimica Acta, 93 (1985), p. 501. H.H. Hausner, eds., Coatings of High Temperature Materials (New York: Plenum, 1966). G.V. Samsonov, Silicides and Their Uses in Engineering (Kiev, Ukraine: Akad. Nauk. Ukr. SSR, 1959). A. Guivarc’h et al., J. Appl. Phys., 49 (1978), p. 233. A. Perio and J. Torres, J. Appl. Phys., 59 (1986), p. 2760. A. Perio et al., Appl. Phys. Lett., 45 (1984), p. 857. S.P. Murarka, Silicides for VLSI Applications (New York: Academic, 1983). A.K. Vasudevan and J.J. Petrovic, Mat. Sci. and Eng., A155 (1992), p. 1. R.M. Aikin, Scripta Met. et Mat., 26 (1991), p. 1025. E. Fitzer and W. Remmele, 5th International Conference on Composite Materials (Warrendale, PA: TMS, 1985), pp. 515–530. E. Fitzer and F.K. Schmidt, High Temperature-High Pressure, 3 (1971), p. 445. T.C. Lu et al., Acta Met., 39 (1991), p. 1853. P.J. Meschter, Scripta Met. et Mat., 25 (1991), p. 521. D.H. Carter, “SiC Whisker-Reinforced MoSi2,” LA-11411-T (New Mexico: Los Alamos National Laboratory, 1988). P.J. Meschter, Scripta Met. et Mat., 25 (1991), p. 1065. A.K. Bhattacharya and J.J. Petrovic, J. Am. Ceram. Soc., 75 (1992), p. 23. J.H. Westbrook and D.L. Wood, J. Nucl. Mater., 12 (1964), p. 208. J.B. Berkowitz-Mattuck, P.E. Blackburn, and E.J. Felten, Trans. Met. Soc. AIME, 233 (1965), p. 1093. J.R. Lewis, J. Metals, 13 (1961), p. 829. R.M. Paine, A.J. Stonehouse, and W.W. Beaver, Int. Symp. on Compounds of Interest in Nucl. Reactor Tech., ed. Waber, Chiotti, and Miner (New York: TMS-AIME, 1964), p. 495. T.C. Chou, T.G. Nieh, and J. Wadsworth, Scripta Met. et Mat., 27 (1992), p. 897. V.K. Tolpygo and H.J. Grabke, Scripta Met. et Mat., 28 (1993), p. 747. P.J. Meschter, Met. Trans., A23 (1992), P. 1763. T.C. Chou and T.G. Nieh, Scripta Met. et Mat., 26 (1992), p. 1637. T.C. Chou and T.G. Nieh, Scripta Met. et Mat., 27 (1992), p. 19. C.G. McKamey et al., J. Mater. Res., 7 (1992), p. 2747. T.C. Chou and T.G. Nieh, Materials Research Proceeding 288 (1993), p. 965. T.C. Chou and T.G. Nieh, J. Mater. Res., 8 (1993), p. 214. T.C. Chou and T.G. Nieh, J. Mater. Res. (in press). M. Nakamura, S. Matsumoto, and T. Hirano, J. Mat. Sci., 25 (1990), p. 3309. A.B. Gokhale and G.J. Abbaaschian, Binary Alloy Phase Diagrams, Vol. I, ed. T.B. Massalski et al. (Materials Park, OH: ASM, 1986), p. 1632. T.C. Chou and T.G. Nieh, Thin Solid Films, 214 (1992), p. 48. C.H. Ho et al., Thin Solid Films, 207 (1992), p. 294. Kubaschewski and C.B. Alcock, Metallurgical Thermochemistry, 5th ed. (New York: Pergamon Press, 1979), pp. 336–384. I. Barin, O. Knacke, and O. Kubaschewski, Thermochemical Properties of Inorganic Substances (New York: Springer, 1977), pp. 422–489. D.A. Berztiss et al., Mat. Sci. and Eng., A155 (1992),p. 165. O. Kubaschewski and C.B. Alcock, Metallurgical Thermochemistry, 5th ed. (New York: Pergamon Press, 1979), pp. 115–117. L. Brewer et al., Molybdenum: Physico-Chemical Properties of Its Compounds and Alloys, ed. L. Brewer (Vienna, Austria: International Atomic Energy Agency, 1980), p. 38. G.R. Belton and A.S. Jordan, J. Phys. Chem., 69 (1965), p. 2065. T. Millner and J. Neugebauer, Nature, 163 (1949), p. 601. C.G. McKamey et al., J. Mat. Res., 7 (1992), p. 2747. E. Fitzer, Plansee Proc., 3rd Seminar, Reurte/Tirol (Vienna, Austria: Springer, 1959), p. 175. A.U. Seybolt and J.H. Westbrook, Report No. ASD-TDR-63-309, Part II, 1964. J.B. Berkowitz, P.E. Blackburn, and E.J. Felten, Trans. TMS-AIME, 233 (1965), p. 1093. R.W. Bartlett, J.W. McCamont, and P.R. Gage, J. Am. Ceram. Soc., 48 (1965), p. 551. P.I. Glushko, V.I. Dorokhov, and Ye P. Nechiporenko, Phys. Metals Metallog. (USSR) (English Transl.), 13(6) (1962), p. 111.