Agricultural land-use intensity and its effects on small mammals in the central region of Argentina

Mammal Research - Tập 60 - Trang 415-423 - 2015
María Daniela Gomez1,2, José Coda1,2, Ivana Simone2, Juan Martínez1,2, Florencia Bonatto2, Andrea R. Steinmann1,2, José Priotto1,2
1Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
2Departamento de Ciencias Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina

Tóm tắt

Agriculture intensification is one of the main threats to biodiversity in agricultural systems. The effectiveness of conservation strategies in these systems depends mainly on the compromise between biodiversity conservation and agricultural land use. The aim of this study was to assess the effect of land-use intensity, characteristics of linear habitats (field borders) and their surrounding fields (landscape) on small mammal richness and abundance in agricultural systems of Argentina. In autumn 2009, we performed a removal sampling in 60 traplines located in the field borders of high or low land-use intensity regions. In traplines under high land-use intensity we found seven species while under low land-use intensity we found ten. Characteristic species of grasslands and woodlands such as Monodelphis dimidiata, Thylamys pallidior, Necromys lasiurus and Graomys griseoflavus were only captured in traplines under low land-use intensity. Higher numbers of Calomys musculinus species (habitat generalist) were observed under high land-use intensity while Akodon azarae and Oxymycterus rufus species, known as habitat specialists, were more frequently found in the low land-use intensity region. Border width and height, as well as land use of both sides of the border, were major variables for explaining small mammal abundances. Our results suggest that conservation of wide field borders with characteristics similar to those of natural habitats would be crucial for sustainable management of Pampean agricultural systems which hold high richness and abundance of small mammal species.

Tài liệu tham khảo

Andreo V, Lima MA, Provensal MC, Priotto JW, Polop JJ (2009) Population dynamics of two rodent species in agro-ecosystems of central Argentina: intra-specific competition, land-use, and climate effects. Popul Ecol 51:297–306. doi:10.1007/s10144-008-0123-3 Baldi G, Guerschman JP, Paruelo JM (2006) Characterizing fragmentation in temperate South America grasslands. Agric Ecosyst Environ 116:197–208. doi:10.1016/j.agee.2006.02.009 Baraibar B, Westerman PR, Carrión E, Recasens J (2009) Effects of tillage and irrigation in cereal fields on weed seed removal by seed predators. J Appl Ecol 46:380–387. doi:10.1111/j.1365-2664.2009.01614.x Bilenca DN, Kravetz FO (1995) Patrones de abundancia relativa en ensamble de pequeños roedores, de la región pampeana. Ecol Austral 5:21–30 Bilenca DN, González-Fischer CM, Teta P, Zamero M (2007) Agricultural intensification and small mammal assemblages in agroecosystems of the Rolling Pampas, central Argentina. Agric Ecosyst Environ 121:371–375. doi:10.1016/j.agee.2006.11.014 Brown A, Martinez Ortiz U, Acerbi M, Corcuera J (2006) La situación ambiental Argentina 2005. Vida Silvestre Argentina, Buenos Aires, Argentina Burnham KP, Anderson DR (2002) Model Selection and multimodel inference. A practical information-theoretic approach, Secondth edn. Springer, New York Busch M, Miño MH, Dadon JR, Hodara K (2000) Habitat selection by Calomys musculinus (Muridae, Sigmodontinae) in crop areas of the pampean region, Argentina. Ecol Austral 10:15–26 Carey AB, Kershner J, Biswell B, Dominguez de Toledo AL (1999) Ecological scale and forest development: squirrels, dietary fungi, and vascular plants in managed and unmanaged forest. Wildl Monogr 142:1–71 Cavia R, Gómez Villafañe IE, Cittadino EA, Bilenca DN, Miño MH, Busch M (2005) Effects of cereal harvest on abundance and spatial distribution of the rodent Akodon azarae in central Argentina. Agric Ecosyst Environ 107:95–99 Chuvieco E (1996) Fundamentos de teledetección espacial, vol II. Ediciones RIALP S.A, Alcalá, Madrid Cisneros JM, Cantero A, Degioanni A, Becerra VH, Zubrzycki MA (2008) Producción, uso y manejo de las tierras. In: de Prada JD, Penna J (eds) Percepción económica y visión de los productores agropecuarios de los problemas ambientales en el sur de Córdoba. Argentina. Publicaciones Nacionales INTA, Buenos Aires, pp 31–34 Coda JA, Gomez MD, Steinmann AR, Priotto JW (2014) The effects of agricultural management on the reproductive activity of female rodents in Argentina. Basic Appl Ecol 15:407–415. doi:10.1016/j.baae.2014.06.005 Coda JA, Gomez MD, Steinmann AR, Priotto JW (2015) Small mammals in farmlands of Argentina: responses to organic and conventional farming. Agric Ecosyst Environ 211:17–23. doi:10.1016/j.agee.2015.05.007 Concepción ED, Díaz M, Baquero RA (2008) Effects of landscape complexity on the ecological effectiveness of agri-environment schemes. Landsc Ecol 23:135–148. doi:10.1007/s10980-007-9150-2 Didham RK (2010) The ecological consequences of habitat fragmentation. Encyclopedia of Life Sciences. Wiley, Ltd, Chichester, pp 1–11 Donald PF, Gree RE, Heath MF (2001) Agricultural intensification and the collapse of Europe’s farmland bird populations. Proc R Soc B 268:25–29. doi:10.1098/rspb.2000.1325 Elkinton JS, Healy WM, Buonaccorsi JP, Boettner GH, Hazzard AM, Smith HR, Liebhold AM (1996) Interactions among gypsy moths, white-footed mice, and acorns. Ecology 77:2332–2342 Fahrig L, Baudry J, Brotons LL, Burel FG, Crist TO, Fuller RJ, Sirami C, Siriwardena GM, Martin J-L (2011) Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett 14:101–12. doi:10.1111/j.1461-0248.2010.01559.x Filippi-Codaccioni O, Devictor V, Bas Y, Clobert J, Julliard R (2010) Specialist response to proportion of arable land and pesticide input in agricultural landscapes. Biol Conserv 143:883–890. doi:10.1016/j.biocon.2009.12.035 Firbank LG, Petit S, Smart S, Blain A, Fuller RJ (2008) Assessing the impacts of agricultural intensification on biodiversity: a British perspective. Philos Trans R Soc B 363:777–87. doi:10.1098/rstb.2007.2183 Fischer C, Schröder B (2014) Predicting spatial and temporal habitat use of rodents in a highly intensive agricultural area. Agric Ecosyst Environ 189:145–153. doi:10.1016/j.agee.2014.03.039 Fischer C, Thies C, Tscharntke T (2011) Small mammals in agricultural landscapes: opposing responses to farming practices and landscape complexity. Biol Conserv 144:1130–1136. doi:10.1016/j.biocon.2010.12.032 Foley JA, Defries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574. doi:10.1126/science.1111772 Fraschina J, León VA, Busch M (2012) Long-term variations in rodent abundance in a rural landscape of the Pampas, Argentina. Ecol Res 27:191–202. doi:10.1007/s11284-011-0888-2 Fuentes-Montemayor E, Goulson D, Cavin L, Wallace JM, Park KJ (2012) Factors influencing moth assemblages in woodland fragments on farmland: implications for woodland management and creation schemes. Biol Conserv 153:265–275. doi:10.1016/j.biocon.2012.04.019 Geiger F, Bengtsson J, Berendse F, Weisser WW, Emmerson M, Morales MB, Ceryngier P, Liira J, Tscharntke T, Winqvist C, Eggers S, Bommarco R, Pärt T, Bretagnolle V, Plantegenest M, Clement LW, Dennis C, Palmer C, Oñate JJ, Guerrero I, Hawro V, Aavik T, Thies C, Flohre A, Hänke S, Fischer C, Goedhart PW, Inchausti P (2010) Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl Ecol 11:97–105. doi:10.1016/j.baae.2009.12.001 Gomez MD, Sommaro L, Steinmann AR, Chiappero M, Priotto JW (2011) Movement distances of two species of sympatric rodents in linear habitats of Central Argentine agro-ecosystems. Mamm Biol 76:58–63. doi:10.1016/j.mambio.2010.02.001 González Fischer CM, Baldi G, Codesido M, Bilenca DN (2012) Seasonal variations in small mammal-landscape associations in temperate agroecosystems: a study case in Buenos Aires province, central Argentina. Mammalia 76:399–406. doi:10.1515/mammalia-2011-0113 Hole DG, Perkins AJ, Wilson J, Alexander I, Grice P, Evans A (2005) Does organic farming benefit biodiversity? Biol Conserv 122:113–130. doi:10.1016/j.biocon.2004.07.018 Ims RA (1995) Movement patterns related to spatial structures. In: Hansson L, Fahrig L, Merriam G (eds) Mosaic landscapes and ecological processes. Chap-Man & Hall, London, pp 85–109 Levins R (1968) Evolution in changing environment. Princenton University Press, Princenton, New Jersey Lindenmayer DB, Fischer J (2006) Habitat fragmentation and landscape change: an ecological and conservation synthesis. Island press, Washington Mac Nally R (2000) Regression and model-building in conservation biology, biogeography and ecology: the distinction between—and reconciliation of—“predictive” and “explanatory” models. Biodivers Conserv 9:655–671 Markham BL, Barker JL (1986) Landsat MSS and TM post-calibration dynamic rangers, exoatmospheric reflectance and at-satellite temperatures. EOSAT Landsat Tech Notes., pp 3–8 Martínez JJ, Millien V, Simone I, Priotto JW (2014) Ecological preference between generalist and specialist rodents: spatial and environmental correlates of phenotypic variation. Biol J Linn Soc 112:180–203. doi:10.1111/bij.12268 Maser C, Trappe JM, Nussbaum RA (1978) Fungal-small mammal interrelationships with emphasis on Oregon coniferous forest. Ecology 59:799–809 Medan D, Torretta JP, Hodara K, Fuente EB, Montaldo NH (2011) Effects of agriculture expansion and intensification on the vertebrate and invertebrate diversity in the Pampas of Argentina. Biodivers Conserv 20:3077–3100. doi:10.1007/s10531-011-0118-9 Michel N, Burel FG, Butet A (2006) How does landscape use influence small mammal diversity, abundance and biomass in hedgerow networks of farming landscapes? Acta Oecol 30:11–20. doi:10.1016/j.actao.2005.12.006 Michel N, Burel FG, Legendre P, Butet A (2007) Role of habitat and landscape in structuring small mammal assemblages in hedgerow networks of contrasted farming landscapes in Brittany, France. Landsc Ecol 22:1241–1253. doi:10.1007/s10980-007-9103-9 Millán de la Peña N, Butet A, Delettre Y, Paillat G, Morant P, Le Du L, Burel FG (2003) Response of the small mammal community to changes in western French agricultural landscapes. Landsc Ecol 18:265–278 Mora MS, Mapelli FJ, Gaggiotti OE, Kittlein MJ, Lessa EP (2010) Dispersal and population structure at different spatial scales in the subterranean rodent Ctenomys australis. BMC Genet 11:1–14. doi:10.1186/1471-2156-11-9 Pardiñas UFJ, Moreira GJ, García-Esponda CM, de Santis LJM (2000) Deterioro ambiental y micromamíferos durante el Holoceno en el nordeste de la estepa patagónica (Argentina). Rev Chil Hist Nat 73:9–21 Pardiñas UFJ, Cirignoli S, Podesta DH (2001) Nuevos micromamíferos registrados en la Península de Valdés (Provincia de Chubut, Argentina). Neotropica 47:101–102 Pardiñas UFJ, Abba AM, Merino ML (2004) Micromamiferos (Didelphimorphia y Rodentia) del sudoeste de la Provincia de Buenos Aires (Argentina): Taxonomía y distribución. Mastozoología Neotrop 11:211–232 Pimm SL, Raven PH (2000) Extinction by numbers. Nature 403:843–845 Poggio SL, Chaneton EJ, Ghersa CM (2010) Landscape complexity differentially affects alpha, beta, and gamma diversities of plants occurring in fencerows and crop fields. Biol Conserv 143:2477–2486. doi:10.1016/j.biocon.2010.06.014 Polop JJ (1996) Análisis de las respuestas adaptativas del género Calomys. Universidad Nacional de Río Cuarto. Córdoba, Argentina Priotto J, Steinmann A, Polop J (2002) Factor affecting home range size andoverlap in Calomys venustus (Muridae: Sigmodontinae) in Argentine agroecosystems. Mamm Biol 67:97–104 R Development Core Team (2013) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria, http://www.R-project.org Salamolard M, Butet A, Leroux A, Bretagnolle V (2000) Responses of an avian predator to variations in prey density at a temperate latitude. Ecology 81:2428–2441 Schott JR, Volchok WJ (1985) Thematic Mapper thermal infrared calibration. Photogramm Eng Remote Sensing 51:1351–1357 Sikes RS, Gannon WL (2011) Guidelines of the American Society of Mammalogists for the use of wild mammals in research. J Mammal 92:235–253. doi:10.1644/10-MAMM-F-355.1 Simone I, Cagnacci F, Provensal MC, Polop JJ (2010) Environmental determinants of the small mammal assemblage in an agroecosystem of central Argentina: the role of Calomys musculinus. Mamm Biol 75:496–509 Simone I, Provensal MC, Polop JJ (2012) Habitat use by corn mice (Calomys musculinus) in crop field borders of agricultural ecosystems in Argentina. Wildl Res 39:112–122 Sirami C, Brotons L, Martin J-L (2007) Vegetation and songbird response to land abandonment: from landscape to census plot. Divers Distrib 13:42–52. doi:10.1111/j.1472-4642.2006.00297.x Sommaro L, Gomez MD, Bonatto F, Steinmann AR, Chiappero M, Priotto JW (2010) Corn mice (Calomys musculinus) movement in linear habitats of agricultural ecosystems. J Mammal 91:668–673 Tucker CJ, Fung IY, Keeling CD, Gammon RH (1986) Relationship between atmospheric CO2 variations and a satellite-deriver vegetation index. Nature 319:195–199 Wukelic GE, Gibbons DE, Martucci LM, Foote HP (1989) Radiometric calibration of Landsat Thematic Mapper thermal band. Remote Sens Environ 28:339–347. doi:10.1016/0034-4257(89)90125-9 Yletyinen S, Norrdahl K (2008) Habitat use of field voles (Microtus agrestis) in wide and narrow buffer zones. Agric Ecosyst Environ 123:194–200. doi:10.1016/j.agee.2007.06.002