A comparative study of additive manufacturing techniques: Residual stress and microstructural analysis of CLAD and WAAM printed Ti–6Al–4V components

Materials and Design - Tập 89 - Trang 559-567 - 2016
Blanka A. Szost1, Sofiane Terzi1,2, Filomeno Martina3, Didier Boisselier4, Anastasiia Prytuliak1,2, Thilo Pirling2, Michael Hofmann5, David J. Jarvis1
1European Space Agency, ESTEC, Keplerlaan 1, PO Box 299, NL-2200 AG Noordwijk, The Netherlands
2Institut Laue-Langevin, CS20156, F-38042 Grenoble Cedex 9, France
3Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK
4Irepa Laser, Parc d'Innovation — Pôle API, Illkirch 67400, France
5FRM II TU Munich, Lichtenbergstrasse 1, D-85747 Garching, Germany

Tài liệu tham khảo

Semiatin, 1997, The thermomechanical processing of alpha/beta titanium alloys, J. Metals, 49, 33 Qi, 2011, Research on forming technology of electron beam selective melting for Ti–6Al–4V powder, Appl. Mech. Mater., 44–47, 2778 Flower, 1995 Baufeld, 2010, Additive manufacturing of Ti–6Al–4V components by shape metal deposition: microstructure and mechanical properties, Mater. Des., 31, S106, 10.1016/j.matdes.2009.11.032 Colegrove, 2013, Microstructure and residual stress improvement in wire and arc additively manufactured parts through high-pressure rolling, J. Mater. Process. Technol., 213, 1782, 10.1016/j.jmatprotec.2013.04.012 Kazanas, 2012, Fabrication of geometrical features using wire and arc additive manufacture, Proc. Inst. Mech. Eng. B J. Eng. Manuf., 226, 1042, 10.1177/0954405412437126 He, 2011, Research on preheating of titanium alloy powder in electron beam melting technology, Rare Metal Mater. Eng., 40, 2072, 10.1016/S1875-5372(12)60014-9 Weng, 2014, Research status of laser cladding on titanium and its alloys: a review, Mater. Des., 58, 412, 10.1016/j.matdes.2014.01.077 Gong, 2014, Review on powder-based electron beam additive manufacturing technology, Manuf. Rev., 1 Zhaia, 2015, Microstructure evolution, tensile properties, and fatigue damage mechanisms in Ti–6Al–4V alloys fabricated by two additive manufacturing techniques, Procedia Eng., 114, 658, 10.1016/j.proeng.2015.08.007 Gong, 2015, Influence of defects on mechanical properties of Ti–6Al–4V components produced by selective laser melting and electron beam melting, Mater. Des., 86, 545, 10.1016/j.matdes.2015.07.147 Schenk, 2009, A study on the influence of clamping on welding distortion, Comput. Mater. Sci., 45, 999, 10.1016/j.commatsci.2009.01.004 Moat, 2011, Residual stresses in laser direct metal deposited Waspaloy, Mater. Sci. Eng. A, 528, 2288, 10.1016/j.msea.2010.12.010 Sequeira, 2010, Proc. innovative process model of Ti–6Al–4V additive layer manufacturing using cold metal transfer (CMT) Kobryn, 2001, The laser additive manufacture of Ti–6Al–4V, JOM, 53, 40, 10.1007/s11837-001-0068-x Syed, 2012, Effect of postweld heat treatment on microstructure, hardness, and tensile properties of laser-welded Ti–6Al–4V, Metall. Mater. Trans. A, 43, 4171, 10.1007/s11661-012-1230-5 Rossini, 2012, Methods of measuring residual stresses in components, Mater. Des., 35, 572, 10.1016/j.matdes.2011.08.022 Hutchings, 1992 Colegrove, 2014, High pressure interpass rolling of wire+arc additively manufactured titanium components, Adv. Mater. Res., 996, 694, 10.4028/www.scientific.net/AMR.996.694 Stapleton, 2008, Evolution of lattice strain in Ti–6Al–4V during tensile loading at room temperature, Acta Mater., 56, 6186, 10.1016/j.actamat.2008.08.030 Martina, 2012, Investigation of the benefits of plasma deposition for the additive layer manufacture of Ti–6Al–4V, J. Mater. Process. Technol., 212, 1377, 10.1016/j.jmatprotec.2012.02.002 DebRoy, 1995, Physical processes in fusion welding, Rev. Mod. Phys., 67, 85, 10.1103/RevModPhys.67.85 Kurz, 2001, Columnar to equiaxed transition in solidification processing, Sci. Technol. Adv. Mater., 2, 185, 10.1016/S1468-6996(01)00047-X Moat, 2009, Crystallographic texture and microstructure of pulsed diode laser-deposited waspaloy, Acta Mater., 57, 1220, 10.1016/j.actamat.2008.11.004 Kelly, 2004, Microstructural evolution in laser-deposited multilayer Ti–6Al–4V builds: part I. microstructural characterisation, Metall. Mater. Trans. A, 35, 1861, 10.1007/s11661-004-0094-8 Shunmugavel, 2015, Microstructure and mechanical properties of wrought and additive manufactured Ti–6Al–4V cylindrical bars, Procedia Technol., 20, 231, 10.1016/j.protcy.2015.07.037 Yu, 2014, Effect of trace boron addition on microstructure and properties of as-cast Ti–6Al–4V alloy, Rare Metal Mater. Eng., 43, 2908, 10.1016/S1875-5372(15)60031-5 Wang, 2013, Microstructure and mechanical properties of wire and arc additive manufactured Ti–6Al–4V, Metall. Mater. Trans. A, 44, 968, 10.1007/s11661-012-1444-6 Dantzig, 2009 Ueda, 2012 Attallah, 2010, Microstructural and residual stress development due to inertia friction welding in Ti-6246, Metall. Mater. Trans. A, 41A, 3149