A short-time diffusion correlation for hydrogen-induced crack growth kinetics

Springer Science and Business Media LLC - Tập 6 - Trang 1485-1498 - 1975
W. W. Gerberich1, Y. T. Chen1, C. ST. John2
1Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis
2Centre des Materiaux de l’Ecole des Mines, Corbeil-Essone, France

Tóm tắt

Analysis of hydrogen-stress field interactions have led to kinetic criteria for slow crack growth. Using both elastic and plastic stress fields under opening-mode loading, criteria for stage I, II, III growth are developed in terms of the pressure tensor gradient at the crack tip. It is proposed that stage I (stress-intensity dependent) growth kinetics are predominantly controlled by the elastic stress field while stage II (nearly stress-intensity independent) kinetics are controlled by the plastic stress field. Measurements of slow crack growth in cathodically-charged AISI 4340 steel verify the overall aspects of the correlation. Detailed measurement and analysis of the increase in crack-tip radius with increasing applied stress intensity have led to a proposed decrease in crack growth rate during stage II growth. Some experimental evidence corroborates this later hypothesis and is consistent with long range diffusional flow of hydrogen as the controlling mechanism for crack growth kinetics.

Tài liệu tham khảo

A. R. Troiano:Trans. ASM, 1960, vol. 52, p. 54. R. A. Oriani:Fundamental Aspects of Stress Corrosion Cracking, p. 32, Nat. Assoc. of Corros. Engrs., Houston, 1969. C. St. John and W. W. Gerberich:Met. Trans., 1973, vol. 4, p. 589 W. W. Gerberich and Y. T. Chen:Met. Trans., 1975, vol. 6A, p. 271. B. C. Syrett:Corrosion, 1973, vol. 29, no. 1, p. 23. H. P. Van Leeuwen:ibid., no. 5, p. 197. H. W. Liu:J. Basic Eng., ASME, 1970, vol. 92, p. 633. R. P. Harrison, P. T. Heald, and J. A. Williams:Scripta Met., 1971,vol. 5,p. 543. W. W. Gerberich:Hydrogen in Metals, p. 115, ASM, Metals Park, 1974. A. J. Stavros and H. W. Paxton:Met. Trans., 1970, vol. 1, p. 3049. W. G. Reuter and C. E. Hartbower:Eng. Fract. Mech, 1971, vol. 3, p. 493. P. C. Paris and G. C. Sih:Amer. Soc. Test. Mater. Special Tech. Publ. 381, 1965, p. 30. A. J. Wang:Quart. Appl. Mech., 1954, vol. 11, p. 427. C. D. Beachem:Met. Trans., 1972, vol. 3, p. 437. W. W. Gerberich and C. E. Hartbower:Fundamental Aspects of Stress Corrosion Cracking, p. 420, Nat. Assoc. of Corros. Engrs., Houston, 1969. A. S. Tetelman and A. J. McEvily, Jr.:Fracture of Structural Materials, John Wiley and Sons, New York, 1967. F. R. Coe and J. Moreton:Met. Sci. J., 1969, vol. 3, p. 209. G. M. Evans and E.C.Rollason:J.Iron and Steel Inst., 1969, December, p. 1491. A. J. Kumnick and H. H. Johnson:Met. Trans., 1974, vol. 5, p. 1199. S. Mostovoy, H. R. Smith, R. G. Lingwall, and E. J. Ripling:Eng. Fract. Mech., 1971, vol. 3, p. 291. H. L. Dunegan and A. S. Tetelman:Eng. Fract. Meck, 1971, vol. 2, p. 387. C. S. Carter:Corrosion, 1969, vol. 25, no. 10, p. 423. C. S. Carter:Corrosion, 1971, vol. 27, no. 11, p. 471. V. J. Colangelo and M. S. Ferguson:Corrosion, 1969, vol. 25, no. 12, p. 509. C. S. Carter:Eng. Fract. Mech., 1971, vol. 3, p. 1. G. E. Kerns and R. W. Staehle:Scripta Met, 1972, vol. 6, p. 631. W. D. Benjamin and E. A. Steigerwald: Air Force Materials Laboratory Report TR-68-80, 1968. C. S. Kortovich and E. A. Steigerwald:Eng. Fract. Mech., 1972, vol. 4, p. 637. J. M. Krafft and H. L. Smith: NRL Memo Report 2598, Naval Research Laboratory, Washington, April 1973. W. A. Van Der Sluys:Eng. Fract. Mech., 1968, vol. 1, p. 447. A. M. Sullivan:Eng. Fract. Mech., 1972, vol. 4, p. 65. J. R. Rice and M. A. Johnson: inInelastic Behavior of Solids, M. F. Kanninen,et al, ed, McGraw-Hill, New York, 1970, p. 641. J. R. Rice and D. M. Tracy: inNumerical and Computer Methods in Structural Mechanics, S. J. Fenves,et al., ed., Academic Press, New York, 1973, p. 585. R. A. Oriani:Bunsen-Gesellshaft Phys. Chem., 1972, vol. 76, p. 848. R. A. Oriani:Acta Met., 1974, vol. 22, p. 1065.