Disentangling Interactions in the Microbiome: A Network Perspective

Trends in Microbiology - Tập 25 - Trang 217-228 - 2017
Mehdi Layeghifard1, David M. Hwang2,3, David S. Guttman1,4
1Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
2Department of Pathology, University Health Network, Toronto, Ontario, Canada
3Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
4Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada

Tài liệu tham khảo

Hooper, 2012, Interactions between the microbiota and the immune system, Science, 336, 1268, 10.1126/science.1223490 Thaiss, 2016, The microbiome and innate immunity, Nature, 535, 65, 10.1038/nature18847 Hacquard, 2015, Microbiota and host nutrition across plant and animal kingdoms, Cell Host Microbe, 17, 603, 10.1016/j.chom.2015.04.009 Pop, 2014, Diarrhea in young children from low-income countries leads to large-scale alterations in intestinal microbiota composition, Genome Biol., 15, R76, 10.1186/gb-2014-15-6-r76 Gülden, 2015, The gut microbiota and Type 1 Diabetes, Clin. Immunol., 159, 143, 10.1016/j.clim.2015.05.013 Yu, 2015, Gut microbiota and colorectal cancer, Gastrointest. Tumors, 2, 26, 10.1159/000380892 Morgan, 2012, Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment, Genome Biol., 13, R79, 10.1186/gb-2012-13-9-r79 Jalanka-Tuovinen, 2014, Faecal microbiota composition and host–microbe cross-talk following gastroenteritis and in postinfectious irritable bowel syndrome, Gut, 63, 1737, 10.1136/gutjnl-2013-305994 Perry, 2016, Acetate mediates a microbiome–brain–β-cell axis to promote metabolic syndrome, Nature, 534, 213, 10.1038/nature18309 Stecher, 2012, Gut inflammation can boost horizontal gene transfer between pathogenic and commensal Enterobacteriaceae, Proc. Natl. Acad. Sci. U.S.A., 109, 1269, 10.1073/pnas.1113246109 Rodrigues Hoffmann, 2016, The microbiome: the trillions of microorganisms that maintain health and cause disease in humans and companion animals, Vet. Pathol., 53, 10, 10.1177/0300985815595517 Hansen, 2015, The gut microbiome in cardio-metabolic health, Genome Med., 7, 33, 10.1186/s13073-015-0157-z Rogers, 2013, Interpreting infective microbiota: the importance of an ecological perspective, Trends Microbiol., 21, 271, 10.1016/j.tim.2013.03.004 Passos da Silva, 2014, Bacterial multispecies studies and microbiome analysis of a plant disease, Microbiol. Read. Engl., 160, 556, 10.1099/mic.0.074468-0 Dalton, 2011, An in vivo polymicrobial biofilm wound infection model to study interspecies interactions, PloS One, 6, e27317, 10.1371/journal.pone.0027317 Murray, 2014, Mechanisms of synergy in polymicrobial infections, J. Microbiol. Seoul Korea, 52, 188 Proulx, 2005, Network thinking in ecology and evolution, Trends Ecol. Evol., 20, 345, 10.1016/j.tree.2005.04.004 Faust, 2012, Microbial interactions: from networks to models, Nat. Rev. Microbiol., 10, 538, 10.1038/nrmicro2832 Faust, 2012, Microbial co-occurrence relationships in the human microbiome, PLoS Comput. Biol., 8, e1002606, 10.1371/journal.pcbi.1002606 Lima-Mendez, 2015, Determinants of community structure in the global plankton interactome, Science, 348, 1262073, 10.1126/science.1262073 Arumugam, 2011, Enterotypes of the human gut microbiome, Nature, 473, 174, 10.1038/nature09944 Barberán, 2012, Using network analysis to explore co-occurrence patterns in soil microbial communities, ISME J., 6, 343, 10.1038/ismej.2011.119 Copeland, 2015, Seasonal community succession of the phyllosphere microbiome, Mol. Plant. Microbe Interact., 28, 274, 10.1094/MPMI-10-14-0331-FI Chen, 2016, A two-part mixed-effects model for analyzing longitudinal microbiome compositional data, Bioinformatics, 32, 2611, 10.1093/bioinformatics/btw308 Weiss, 2016, Correlation detection strategies in microbial data sets vary widely in sensitivity and precision, ISME J., 10, 1669, 10.1038/ismej.2015.235 van den Bergh, 2012, Associations between pathogens in the upper respiratory tract of young children: interplay between viruses and bacteria, PloS One, 7, e47711, 10.1371/journal.pone.0047711 Mitra, 2013, Integrative approaches for finding modular structure in biological networks, Nat. Rev. Genet., 14, 719, 10.1038/nrg3552 Freeman, 1978, Centrality in social networks conceptual clarification, Soc. Netw., 1, 215, 10.1016/0378-8733(78)90021-7 Brandes, 2001, A faster algorithm for betweenness centrality, J. Math. Sociol., 25, 163, 10.1080/0022250X.2001.9990249 Bonacich, 1987, Power and centrality: a family of measures, Am. J. Sociol., 92, 1170, 10.1086/228631 Bauer, 2012, Identifying influential spreaders and efficiently estimating infection numbers in epidemic models: a walk counting approach, EPL Europhys. Lett., 99, 68007, 10.1209/0295-5075/99/68007 Sikic, 2013, Epidemic centrality - is there an underestimated epidemic impact of network peripheral nodes?, Eur. Phys. J. B, 86, 440, 10.1140/epjb/e2013-31025-5 Berry, 2014, Deciphering microbial interactions and detecting keystone species with co-occurrence networks, Microb. Symbioses, 5, 219 Viana, 2013, Accessibility in networks: A useful measure for understanding social insect nest architecture, Chaos Solitons Fractals, 46, 38, 10.1016/j.chaos.2012.11.003 Lawyer, 2014, Understanding the spreading power of all nodes in a network, Sci. Rep., 5, 8665, 10.1038/srep08665 Brin, 1998, The anatomy of a large-scale hypertextual web search engine, 107 Kleinberg, 1999, Authoritative sources in a hyperlinked environment, JACM, 46, 604, 10.1145/324133.324140 Faith, 2013, The long-term stability of the human gut microbiota, Science, 341, 1237439, 10.1126/science.1237439 Cho, 2012, Antibiotics in early life alter the murine colonic microbiome and adiposity, Nature, 488, 621, 10.1038/nature11400 David, 2014, Diet rapidly and reproducibly alters the human gut microbiome, Nature, 505, 559, 10.1038/nature12820 Xia, 2013, Efficient statistical significance approximation for local similarity analysis of high-throughput time series data, Bioinforma. Oxf. Engl., 29, 230, 10.1093/bioinformatics/bts668 Xia, 2011, Extended local similarity analysis (eLSA) of microbial community and other time series data with replicates, BMC Syst. Biol., 5, 1, 10.1186/1752-0509-5-S2-S15 Ruan, 2006, Local similarity analysis reveals unique associations among marine bacterioplankton species and environmental factors, Bioinforma. Oxf. Engl., 22, 2532, 10.1093/bioinformatics/btl417 Eiler, 2012, Coherent dynamics and association networks among lake bacterioplankton taxa, ISME J., 6, 330, 10.1038/ismej.2011.113 McGeachie, 2016, Longitudinal prediction of the infant gut microbiome with dynamic Bayesian networks, Sci. Rep., 6, 20359, 10.1038/srep20359 Faust, 2015, Metagenomics meets time series analysis: unraveling microbial community dynamics, Curr. Opin. Microbiol., 25, 56, 10.1016/j.mib.2015.04.004 Murray, 2013, Bayesian Gaussian copula factor models for mixed data, J. Am. Stat. Assoc., 108, 656, 10.1080/01621459.2012.762328 Žitnik, 2015, Data fusion by matrix factorization, IEEE Trans. Pattern Anal. Mach. Intell., 37, 41, 10.1109/TPAMI.2014.2343973 Žitnik, 2013, Discovering disease-disease associations by fusing systems-level molecular data, Sci. Rep., 3, 3202, 10.1038/srep03202 Žitnik, 2014, Matrix factorization-based data fusion for drug-induced liver injury prediction, Syst. Biomed., 2, 16, 10.4161/sysb.29072 Žitnik, 2015, Gene network inference by fusing data from diverse distributions, Bioinformatics, 31, i230, 10.1093/bioinformatics/btv258 Erdős, 1960, On the evolution of random graphs, Publ. Math. Inst. Hung. Acad. Sci., 5, 17 Barabási, 1999, Emergence of scaling in random networks, Science, 286, 509, 10.1126/science.286.5439.509 Nafis, 2014, Apoptosis regulatory protein–protein interaction demonstrates hierarchical scale-free fractal network, Brief. Bioinform., 16, 675, 10.1093/bib/bbu036 Teschendorff, 2015, Increased signaling entropy in cancer requires the scale-free property of protein interaction networks, Sci. Rep., 5, 9646, 10.1038/srep09646 Li, 2005, Towards a theory of Scale-free graphs: definition, properties, and implications, Internet Math., 2, 431, 10.1080/15427951.2005.10129111 Watts, 1998, Collective dynamics of “small-world” networks, Nature, 393, 440, 10.1038/30918 Humphries, 2008, Network “small-world-ness”: a quantitative method for determining canonical network equivalence, PLoS One, 3, e2051, 10.1371/journal.pone.0002051 Ma, 2007, An Arabidopsis gene network based on the graphical Gaussian model, Genome Res., 17, 1614, 10.1101/gr.6911207 Wille, 2006, Low-order conditional independence graphs for inferring genetic networks, Stat. Appl. Genet. Mol. Biol., 5, 1, 10.2202/1544-6115.1170 Kurtz, 2015, Sparse and compositionally robust inference of microbial ecological networks, PLoS Comput. Biol., 11, e1004226, 10.1371/journal.pcbi.1004226 Friedman, 2012, Inferring correlation networks from genomic survey data, PLoS Comput. Biol., 8, e1002687, 10.1371/journal.pcbi.1002687 Bell, 2016, A lipid-accumulating alga maintains growth in outdoor, alkaliphilic raceway pond with mixed microbial communities, Microbiotechnology Ecotoxicol. Bioremediation, 6, 1480 Costea, 2014, A fair comparison, Nat. Methods, 11, 10.1038/nmeth.2897 Faust, 2016, CoNet app: inference of biological association networks using Cytoscape, F1000Research, 5, 1519, 10.12688/f1000research.9050.2 Faust, 2015, Cross-biome comparison of microbial association networks, Syst. Microbiol., 6, 1200 Ban, 2015, Investigating microbial co-occurrence patterns based on metagenomic compositional data, Bioinformatics, 31, 3322, 10.1093/bioinformatics/btv364 Fang, 2015, CCLasso: correlation inference for compositional data through Lasso, Bioinformatics, 31, 3172, 10.1093/bioinformatics/btv349 Deng, 2012, Molecular ecological network analyses, BMC Bioinformatics, 13, 113, 10.1186/1471-2105-13-113 Biswas, 2015, Learning microbial interaction networks from metagenomic count data, 32 Girvan, 2002, Community structure in social and biological networks, Proc. Natl. Acad. Sci. U.S.A., 99, 7821, 10.1073/pnas.122653799 Pons, 2005, Computing communities in large networks using random walks, 284 Blondel, 2008, Fast unfolding of communities in large networks, J. Stat. Mech. Theory Exp., 2008, P10008, 10.1088/1742-5468/2008/10/P10008 Van Dongen, 2008, Graph clustering via a discrete uncoupling process, SIAM J. Matrix Anal. Appl., 30, 121, 10.1137/040608635 Hua, 2013, Epigenomic programming contributes to the genomic drift evolution of the F-Box protein superfamily in Arabidopsis, Proc. Natl. Acad. Sci. U.S.A., 110, 16927, 10.1073/pnas.1316009110 Richards, 2014, Phylogenomics and the dynamic genome evolution of the genus Streptococcus, Genome Biol. Evol., 6, 741, 10.1093/gbe/evu048 Lei, 2016, Protein complex identification through Markov clustering with firefly algorithm on dynamic protein–protein interaction networks, Inf. Sci., 329, 303, 10.1016/j.ins.2015.09.028 Wang, 2013, Construction and application of dynamic protein interaction network based on time course gene expression data, PROTEOMICS, 13, 301, 10.1002/pmic.201200277