Receptor recognition and cross-species infections of SARS coronavirus
Tài liệu tham khảo
Annan, 2013, Human betacoronavirus 2c EMC/2012-related viruses in bats, Ghana and Europe, Emerg. Infect. Dis., 19, 456, 10.3201/eid1903.121503
Babcock, 2004, Amino acids 270 to 510 of the severe acute respiratory syndrome coronavirus spike protein are required for interaction with receptor, J. Virol., 78, 4552, 10.1128/JVI.78.9.4552-4560.2004
Becker, 2008, Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and in mice, Proc. Nat. Acad. Sci. U.S.A., 105, 19944, 10.1073/pnas.0808116105
Bosch, 2003, The coronavirus spike protein is a class I virus fusion protein: Structural and functional characterization of the fusion core complex, J. Virol., 77, 8801, 10.1128/JVI.77.16.8801-8811.2003
Breslin, 2003, Human coronavirus 229E: Receptor binding domain and neutralization by soluble receptor at 37 degrees C, J. Virol., 77, 4435, 10.1128/JVI.77.7.4435-4438.2003
Chen, 2013, Structural analysis of the evolutionary origins of influenza virus hemagglutinin and other viral lectins, J. Virol., 87, 4118, 10.1128/JVI.03476-12
Chen, 2012, Structural basis for multifunctional roles of mammalian aminopeptidase N, Proc. Nat. Acad. Sci. U.S.A., 109, 17966, 10.1073/pnas.1210123109
Chen, 2013, Crystal structure of the receptor-binding domain from newly emerged Middle East respiratory syndrome coronavirus, J. Virol., 87, 10777, 10.1128/JVI.01756-13
de Groot, R.J., Baker, S.C., Baric, R.S., Brown, C.S., Drosten, C., Enjuanes, L., Fouchier, R.A., Galiano, M., Gorbalenya, A.E., Memish, Z., Perlman, S., Poon, L.L., Snijder, E.J., Stephens, G.M., Woo, P.C., Zaki, A.M., Zambon, M., Ziebuhr, J., 2013. Middle East Respiratory Syndrome Coronavirus (MERS-CoV); Announcement of the Coronavirus Study Group. Journal of Virology Published online ahead of print.
Donoghue, 2000, A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9, Circ. Res., 87, E1, 10.1161/01.RES.87.5.e1
Du, 2013, Identification of Receptor-Binding Domain in S protein of the Novel Human Coronavirus MERS-CoV as an Essential Target for Vaccine Development, J. Virol., 87, 9939, 10.1128/JVI.01048-13
Frieman, 2012, Molecular determinants of severe acute respiratory syndrome coronavirus pathogenesis and virulence in young and aged mouse models of human disease, J. Virol., 86, 884, 10.1128/JVI.05957-11
Gallagher, 2001, Coronavirus spike proteins in viral entry and pathogenesis, Virology, 279, 371, 10.1006/viro.2000.0757
Godet, 1994, Major receptor-binding and neutralization determinants are located within the same domain of the transmissible gastroenteritis virus (Coronavirus) spike protein, J. Virol., 68, 8008, 10.1128/JVI.68.12.8008-8016.1994
Gonzaalez, 2003, A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae, Arch. Virol., 148, 2207, 10.1007/s00705-003-0162-1
Guan, 2003, Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China, Science, 302, 276, 10.1126/science.1087139
He, 2006, Cross-neutralization of human and palm civet severe acute respiratory syndrome coronaviruses by antibodies targeting the receptor-binding domain of spike protein, J. Immunol., 176, 6085, 10.4049/jimmunol.176.10.6085
He, 2005, Receptor-binding domain of severe acute respiratory syndrome coronavirus spike protein contains multiple conformation-dependent epitopes that induce highly potent neutralizing antibodies, J. Immunol., 174, 4908, 10.4049/jimmunol.174.8.4908
He, 2004, Identification of immunodominant sites on the spike protein of severe acute respiratory syndrome (SARS) coronavirus: Implication for developing SARS diagnostics and vaccines, J. Immunol., 173, 4050, 10.4049/jimmunol.173.6.4050
Holmes, 2013, The New Age of Virus Discovery: Genomic Analysis of a Novel Human Betacoronavirus Isolated from a Fatal Case of Pneumonia, MBio. 8, 4, e00548-12, 10.1128/mBio.00548-12
Hou, 2010, Angiotensin-converting enzyme 2 (ACE2) proteins of different bat species confer variable susceptibility to SARS-CoV entry, Arch. Virol., 155, 1563, 10.1007/s00705-010-0729-6
Huang, 2006, SARS coronavirus, but not human coronavirus NL63, utilizes cathepsin L to infect ACE2-expressing cells, J. Biol. Chem., 281, 3198, 10.1074/jbc.M508381200
Krempl, 1997, Point mutations in the S protein connect the sialic acid binding activity with the enteropathogenicity of transmissible gastroenteritis coronavirus, J. Virol., 71, 3285, 10.1128/JVI.71.4.3285-3287.1997
Ksiazek, 2003, A novel coronavirus associated with severe acute respiratory syndrome, N. Engl. J. Med., 348, 1953, 10.1056/NEJMoa030781
Kubo, 1994, Localization of Neutralizing Epitopes and the Receptor-Binding Site within the Amino-Terminal 330 Amino-Acids of the Murine Coronavirus Spike Protein, J. Virol., 68, 5403, 10.1128/JVI.68.9.5403-5410.1994
Lau, 2013, J. Virol., 87, 8638, 10.1128/JVI.01055-13
Lau, 2005, Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats, Proc. Nat. Acad. Sci. U.S.A., 102, 14040, 10.1073/pnas.0506735102
Lee, 2003, A major outbreak of severe acute respiratory syndrome in Hong Kong, N. Engl. J. Med., 348, 1986, 10.1056/NEJMoa030685
Li, 2008, Structural analysis of major species barriers between humans and palm civets for severe acute respiratory syndrome coronavirus infections, J. Virol., 82, 6984, 10.1128/JVI.00442-08
Li, 2012, Evidence for a common evolutionary origin of coronavirus spike protein receptor-binding subunits, J. Virol., 86, 2856, 10.1128/JVI.06882-11
Li, 2006, Conformational states of the severe acute respiratory syndrome coronavirus spike protein ectodomain, J. Virol., 80, 6794, 10.1128/JVI.02744-05
Li, 2005, Structure of SARS coronavirus spike receptor-binding domain complexed with receptor, Science, 309, 1864, 10.1126/science.1116480
Li, 2006, Interactions between SARS coronavirus and its receptor, Nidoviruses: toward Control of Sars and Other Nidovirus Diseases, Adv. Exp. Med. Biol., 581, 229, 10.1007/978-0-387-33012-9_38
Li, 2005, Bats are natural reservoirs of SARS-like coronaviruses, Science, 310, 676, 10.1126/science.1118391
Li, 2004, Efficient replication of severe acute respiratory syndrome coronavirus in mouse cells is limited by murine angiotensin-converting enzyme 2, J. Virol., 78, 11429, 10.1128/JVI.78.20.11429-11433.2004
Li, 2003, Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus, Nature, 426, 450, 10.1038/nature02145
Li, 2006, Animal origins of the severe acute respiratory syndrome coronavirus: Insight from ACE2-S-protein interactions, J. Virol., 80, 4211, 10.1128/JVI.80.9.4211-4219.2006
Liang, 2004, Laboratory diagnosis of four recent sporadic cases of community-acquired SARS, Guangdong Province, China, Emerg. Infect. Dis., 10, 1774, 10.3201/eid1010.040445
Lin, 2008, Identification of residues in the receptor-binding domain (RBD) of the spike protein of human coronavirus NL63 that are critical for the RBD-ACE2 receptor interaction, J. Gen. Virol., 89, 1015, 10.1099/vir.0.83331-0
Liu, 2007, Natural mutations in the receptor binding domain of spike glycoprotein determine the reactivity of cross-neutralization between palm civet coronavirus and severe acute respiratory syndrome coronavirus, J. Virol., 81, 4694, 10.1128/JVI.02389-06
Lu, 2013, Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26, Nature, 500, 227, 10.1038/nature12328
Marra, 2003, The genome sequence of the SARS-associated coronavirus, Science, 300, 1399, 10.1126/science.1085953
McCray, 2007, Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus, J. Virol., 81, 813, 10.1128/JVI.02012-06
Moore, 2004, Retroviruses pseudotyped with the severe acute respiratory syndrome coronavirus spike protein efficiently infect cells expressing angiotensin-converting enzyme 2, J. Virol., 78, 10628, 10.1128/JVI.78.19.10628-10635.2004
Mou, 2013, The receptor binding domain of the new MERS coronavirus maps to a 231-residue region in the spike protein that efficiently elicits neutralizing antibodies, J. Virol., 87, 9379, 10.1128/JVI.01277-13
Peiris, 2003, Coronavirus as a possible cause of severe acute respiratory syndrome, Lancet, 361, 1319, 10.1016/S0140-6736(03)13077-2
Peng, 2011, Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor, Proc. Nat. Acad. Sci. U.S.A., 108, 10696, 10.1073/pnas.1104306108
Peng, 2012, Crystal Structure of Bovine Coronavirus Spike Protein Lectin Domain, J. Biol. Chem., 287, 41931, 10.1074/jbc.M112.418210
Perlman, 2009, Coronaviruses post-SARS: update on replication and pathogenesis, Nat. Rev. Microbiol., 7, 439, 10.1038/nrmicro2147
Prabakaran, 2006, Structure of severe acute respiratory syndrome coronavirus receptor-binding domain complexed with neutralizing antibody, J. Biol. Chem., 281, 15829, 10.1074/jbc.M600697200
Qu, 2005, Identification of two critical amino acid residues of the severe acute respiratory syndrome coronavirus spike protein for its variation in zoonotic tropism transition via a double substitution strategy, J. Biol. Chem., 280, 29588, 10.1074/jbc.M500662200
Raj, 2013, Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC, Nature, 495, 251, 10.1038/nature12005
Reguera, 2012, Structural bases of coronavirus attachment to host aminopeptidase N and its inhibition by neutralizing antibodies, PLoS Pathog., 8, e1002859, 10.1371/journal.ppat.1002859
Ren, 2008, Difference in receptor usage between severe acute respiratory syndrome (SARS) coronavirus and SARS-like coronavirus of bat origin, J. Virol., 83, 1899, 10.1128/JVI.01085-07
Roberts, 2007, A mouse-adapted SARS-coronavirus causes disease and mortality in BALB/c mice, PLoS Pathog., 3, 23, 10.1371/journal.ppat.0030005
Sheahan, 2008, Pathways of cross-species transmission of synthetically reconstructed zoonotic severe acute respiratory syndrome coronavirus, J. Virol., 82, 8721, 10.1128/JVI.00818-08
Sheahan, 2008, Mechanisms of zoonotic severe acute respiratory syndrome coronavirus host range expansion in human airway epithelium, J. Virol., 82, 2274, 10.1128/JVI.02041-07
Shi, 2008, A review of studies on animal reservoirs of the SARS coronavirus, Virus Res., 133, 74, 10.1016/j.virusres.2007.03.012
Song, 2005, Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human, Proc. Nat. Acad. Sci. U.S.A., 102, 2430, 10.1073/pnas.0409608102
Subbarao, 2004, Prior infection and passive transfer of neutralizing antibody prevent replication of severe acute respiratory syndrome coronavirus in the respiratory tract of mice, J. Virol., 78, 3572, 10.1128/JVI.78.7.3572-3577.2004
Sui, 2004, Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association, Proc. Nat. Acad. Sci. U.S.A., 101, 2536, 10.1073/pnas.0307140101
Towler, 2004, ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis, J. Biol. Chem., 279, 17996, 10.1074/jbc.M311191200
Tseng, 2007, Severe acute respiratory syndrome coronavirus infection of mice transgenic for the human angiotensin-converting enzyme 2 virus receptor, J. Virol., 81, 1162, 10.1128/JVI.01702-06
Wang, 2013, Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4, Cell. Res., 23, 986, 10.1038/cr.2013.92
Wong, 2004, A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2, J. Biol. Chem., 279, 3197, 10.1074/jbc.C300520200
Wu, 2011, A virus-binding hot spot on human angiotensin-converting enzyme 2 is critical for binding of two different coronaviruses, J. Virol., 85, 5331, 10.1128/JVI.02274-10
Wu, 2009, Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor, Proc. Nat. Acad. Sci. U.S.A., 106, 19970, 10.1073/pnas.0908837106
Wu, 2012, Mechanisms of Host Receptor Adaptation by Severe Acute Respiratory Syndrome Coronavirus, J. Biol. Chem., 287, 8904, 10.1074/jbc.M111.325803
Xiao, 2003, The SARS-CoV S glycoprotein: expression and functional characterization, Biochem. Biophys. Res. Commun., 312, 1159, 10.1016/j.bbrc.2003.11.054
Yagil, 2003, Hypothesis - ACE2 modulates blood pressure in the mammalian organism, Hypertension, 41, 871, 10.1161/01.HYP.0000063886.71596.C8
Yu, 2004, Evidence of airborne transmission of the severe acute respiratory syndrome virus, N. Engl. J. Med., 350, 1731, 10.1056/NEJMoa032867
Zaki, 2012, Isolation of a Novel Coronavirus from a Man with Pneumonia in Saudi Arabia, N. Engl. J. Med., 367, 1814, 10.1056/NEJMoa1211721