Induced Ectopic Kinetochore Assembly Bypasses the Requirement for CENP-A Nucleosomes

Cell - Tập 145 - Trang 410-422 - 2011
Karen E. Gascoigne1, Kozo Takeuchi2, Aussie Suzuki2, Tetsuya Hori2, Tatsuo Fukagawa2, Iain M. Cheeseman1
1Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Nine Cambridge Center, Cambridge, MA 02142, USA
2Department of Molecular Genetics, National Institute of Genetics and The Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan

Tài liệu tham khảo

Amano, 2009, The CENP-S complex is essential for the stable assembly of outer kinetochore structure, J. Cell Biol., 186, 173, 10.1083/jcb.200903100 Bear, 2000, Negative regulation of fibroblast motility by Ena/VASP proteins, Cell, 101, 717, 10.1016/S0092-8674(00)80884-3 Carroll, 2010, Dual recognition of CENP-A nucleosomes is required for centromere assembly, J. Cell Biol., 189, 1143, 10.1083/jcb.201001013 Carroll, 2009, Centromere assembly requires the direct recognition of CENP-A nucleosomes by CENP-N, Nat. Cell Biol., 11, 896, 10.1038/ncb1899 Cheeseman, 2005, A combined approach for the localization and tandem affinity purification of protein complexes from metazoans, Sci. STKE, 2005, pl1, 10.1126/stke.2662005pl1 Cheeseman, 2008, Molecular architecture of the kinetochore–microtubule interface, Nat. Rev. Mol. Cell Biol., 9, 33, 10.1038/nrm2310 Cheeseman, 2004, A conserved protein network controls assembly of the outer kinetochore and its ability to sustain tension, Genes Dev., 18, 2255, 10.1101/gad.1234104 Ciferri, 2008, Implications for kinetochore-microtubule attachment from the structure of an engineered Ndc80 complex, Cell, 133, 427, 10.1016/j.cell.2008.03.020 Dephoure, 2008, A quantitative atlas of mitotic phosphorylation, Proc. Natl. Acad. Sci. USA, 105, 10762, 10.1073/pnas.0805139105 Foltz, 2006, The human CENP-A centromeric nucleosome-associated complex, Nat. Cell Biol., 8, 458, 10.1038/ncb1397 Fujita, 2007, Priming of centromere for CENP-A recruitment by human hMis18alpha, hMis18beta, and M18BP1, Dev. Cell, 12, 17, 10.1016/j.devcel.2006.11.002 Fukagawa, 2001, CENP-H, a constitutive centromere component, is required for centromere targeting of CENP-C in vertebrate cells, EMBO J., 20, 4603, 10.1093/emboj/20.16.4603 Gascoigne, 2011, Kinetochore assembly: if you build it, they will come, Curr. Opin. Cell Biol., 23, 102, 10.1016/j.ceb.2010.07.007 Harrington, 1997, Formation of de novo centromeres and construction of first-generation human artificial microchromosomes, Nat. Genet., 15, 345, 10.1038/ng0497-345 Hayashi, 2004, Mis16 and Mis18 are required for CENP-A loading and histone deacetylation at centromeres, Cell, 118, 715, 10.1016/j.cell.2004.09.002 Heun, 2006, Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores, Dev. Cell, 10, 303, 10.1016/j.devcel.2006.01.014 Hori, 2008, CCAN makes multiple contacts with centromeric DNA to provide distinct pathways to the outer kinetochore, Cell, 135, 1039, 10.1016/j.cell.2008.10.019 Howman, 2000, Early disruption of centromeric chromatin organization in centromere protein A (Cenpa) null mice, Proc. Natl. Acad. Sci. USA, 97, 1148, 10.1073/pnas.97.3.1148 Janicki, 2004, From silencing to gene expression: real-time analysis in single cells, Cell, 116, 683, 10.1016/S0092-8674(04)00171-0 Kline, 2006, The human Mis12 complex is required for kinetochore assembly and proper chromosome segregation, J. Cell Biol., 173, 9, 10.1083/jcb.200509158 Lipp, 2007, Aurora B controls the association of condensin I but not condensin II with mitotic chromosomes, J. Cell Sci., 120, 1245, 10.1242/jcs.03425 Masumoto, 1998, Assay of centromere function using a human artificial chromosome, Chromosoma, 107, 406, 10.1007/s004120050324 Nakano, 2008, Inactivation of a human kinetochore by specific targeting of chromatin modifiers, Dev. Cell, 14, 507, 10.1016/j.devcel.2008.02.001 Nousiainen, 2006, Phosphoproteome analysis of the human mitotic spindle, Proc. Natl. Acad. Sci. USA, 103, 5391, 10.1073/pnas.0507066103 Ohzeki, 2002, CENP-B box is required for de novo centromere chromatin assembly on human alphoid DNA, J. Cell Biol., 159, 765, 10.1083/jcb.200207112 Okada, 2006, The CENP-H–I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres, Nat. Cell Biol., 8, 446, 10.1038/ncb1396 Przewloka, 2011, CENP-C is a structural platform for kinetochore assembly, Curr. Biol., 21, 399, 10.1016/j.cub.2011.02.005 Santamaria, 2011, The Plk1-dependent phosphoproteome of the early mitotic spindle, Mol. Cell. Proteomics, 10, 10.1074/mcp.M110.004457 Screpanti, 2011, Direct binding of Cenp-C to the Mis12 complex joins the inner and outer kinetochore, Curr. Biol., 21, 391, 10.1016/j.cub.2010.12.039 Shang, 2010, Chickens possess centromeres with both extended tandem repeats and short non-tandem-repetitive sequences, Genome Res., 20, 1219, 10.1101/gr.106245.110 Sugimoto, 1994, Human centromere protein C (CENP-C) is a DNA-binding protein which possesses a novel DNA-binding motif, J. Biochem., 116, 877, 10.1093/oxfordjournals.jbchem.a124610 Suzuki, 2011, Spindle microtubules generate tension-dependent changes in the distribution of inner kinetochore proteins, J. Cell Biol., 193, 125, 10.1083/jcb.201012050 Van Hooser, 2001, Specification of kinetochore-forming chromatin by the histone H3 variant CENP-A, J. Cell Sci., 114, 3529, 10.1242/jcs.114.19.3529 Washburn, 2001, Large-scale analysis of the yeast proteome by multidimensional protein identification technology, Nat. Biotechnol., 19, 242, 10.1038/85686 Welburn, 2010, Aurora B phosphorylates spatially distinct targets to differentially regulate the kinetochore-microtubule interface, Mol. Cell, 38, 383, 10.1016/j.molcel.2010.02.034 Yang, 1996, Identification of overlapping DNA-binding and centromere-targeting domains in the human kinetochore protein CENP-C, Mol. Cell. Biol., 16, 3576, 10.1128/MCB.16.7.3576 Fukagawa, T.,Mikami, Y., Nishihashi, A., Regnier, V., Haraguchi, T., Hiraoka, Y., Sugata, N., Todokoro, K., Brown, W., and Ikemura, T. (2001). CENP-H, a constitutive centromere component, is required for centromere targeting of CENP-C in vertebrate cells. EMBO J. 20, 4603–4617. Hori, T., Haraguchi, T., Hiraoka, Y., Kimura, H., and Fukagawa, T. (2003). Dynamic behavior of Nuf2-Hec1 complex that localizes to the centrosome and centromere and is essential for mitotic progression in vertebrate cells. J. Cell Sci. 116, 3347–3362. Kline, S.L., Cheeseman, I.M., Hori, T., Fukagawa, T., and Desai, A. (2006). The human Mis12 complex is required for kinetochore assembly and proper chromosome segregation. J. Cell Biol. 173, 9–17. Kwon, M.-S., Hori, T., Okada, M., and Fukagawa, T. (2007). CENP-C is involved in chromosome segregation, mitotic checkpoint function, and kinetochore assembly. Mol. Biol. Cell 18, 2155–2168. Welburn, J.P., Vleugel, M., Liu, D., Yates, J.R., 3rd, Lampson, M.A., Fukagawa, T., and Cheeseman, I.M. (2010). Aurora B phosphorylates spatially distinct targets to differentially regulate the kinetochore-microtubule interface. Mol. Cell 38, 383–392. Welburn, J.P.I., Grishchuk, E.L., Backer, C.B., Wilson-Kubalek, E.M., Yates, J.R., and Cheeseman, I.M. (2009). The human kinetochore Ska1 complex facilitates microtubule depolymerization-coupled motility. Dev. Cell 16, 374–385.