Multi-channel nanosecond discharge plasma ignition of premixed propane/air under normal and sub-atmospheric pressures

Combustion and Flame - Tập 182 - Trang 102-113 - 2017
Bing-xuan Lin1,2, Yun Wu2, Zhi-bo Zhang1, Zheng Chen3
1Science and Technology on Plasma Dynamics Laboratory, Air Force Engineering University, Xi'an 710038, China
2Science and Technology on Plasma Dynamics Laboratory, Xi'an Jiaotong University, Xi'an 710049, China
3SKLTCS, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China

Tài liệu tham khảo

T. Mosbach, R. Sadanandan, W. Meier, R. Eggels, Experimental analysis of altitude relight under realistic conditions using laser and high-speed video techniques, GT2010-22625, ASME. Lefebrave, 1999 Sun, 2013, Nonequilibrium plasma-assistant combustion: a review of recent progress, J. Plasma Fusion Res., 89, 208 Naegeli, 1991, Ignition study in a gas turbine combustor, Combust. Sci. Technol., 80, 165, 10.1080/00102209108951784 Correa, 1993, A review of NOx formation under gas-turbine combustion conditions, Combust. Sci. Technol., 87, 329, 10.1080/00102209208947221 Pucher, 2001, Enhanced ignition systems for aircraft altitude relight, 48, 611 G. Pucher, W.D. Allan, Turbine fuel ignition and combustion facility for extremely low temperature conditions, GT2004-53620 ASME. Read, 2008 R.W. Read, Relight imaging at low temperature low pressure conditions, AIAA Paper. 2008-957 AIAA. Lewis, 1987 Chen, 2007, Theoretical analysis of the evolution from ignition kernel to flame ball and planar flame, Combust. Theory Model., 11, 427, 10.1080/13647830600999850 Kelley, 2009, Critical radius for sustained propagation of spark-ignited spherical flames, Combust. Flame, 156, 1006, 10.1016/j.combustflame.2008.12.005 Chen, 2011, On the critical flame radius and minimum ignition energy for spherical flame initiation, Proc. Combust. Inst., 33, 1219, 10.1016/j.proci.2010.05.005 Ju, 2015, Plasma assisted combustion: Progress, challenges, and opportunities, Combust Flame, 162, 529, 10.1016/j.combustflame.2015.01.017 Starikovskaia, 2014, Plasma-assisted ignition and combustion: nanosecond discharges and development of kinetic mechanisms, J. Phys. D Appl. Phys., 47, 10.1088/0022-3727/47/35/353001 Starikovskii, 2005, Plasma-supported combustion, Proc. Combust. Inst., 30, 2405, 10.1016/j.proci.2004.08.272 Sun, 2012, Kinetic effects of non-equilibrium plasma-assisted methane oxidation on diffusion flame extinction limits, Combust. Flame, 159, 221, 10.1016/j.combustflame.2011.07.008 Xu, 2014 Xu, 2014, Schlieren imaging of shock-wave formation induced by ultrafast heating of a nanosecond repetitively pulsed discharge in air, IEEE Trans. Plasma Sci., 42, 2350, 10.1109/TPS.2014.2311328 Sun, 2013, Direct ignition and S-curve transition by in situ nanosecond pulsed discharge in methane/oxygen/helium counter-flow flame, Proc. Combust. Inst., 34, 847, 10.1016/j.proci.2012.06.104 Sun, 2014, In situ plasma activated low temperature chemistry and the S-curve transition in DME/oxygen/helium mixture, Combust. Flame, 161, 2054, 10.1016/j.combustflame.2014.01.028 A.Y. Starikovskiy, A. Rakitin, G. Correale, A. Nikipelov, T. Urushihara, T. Shiraishi, Ignition of hydrocarbon-air mixtures with non-equilibrium plasma at elevated pressures, AIAA Paper. 2012-0828, AIAA. Starikovskiy, 2013, Plasma assisted ignition and combustion, Prog. Energy Combust. Sci., 39, 61, 10.1016/j.pecs.2012.05.003 Lefkowitz, 2015, Schlieren imaging and pulsed detonation engine testing of ignition by a nanosecond repetitively pulsed discharge, Combust. Flame, 162, 2496, 10.1016/j.combustflame.2015.02.019 Y. Ikeda, A. Nishiyama, M. Kaneko, Microwave enhanced ignition process for fuel mixture at elevated pressure of 1MPa, AIAA paper. 2009-223, AIAA. Ikeda, 2010, Development of microwave-enhanced spark induced breakdown spectroscopy, Appl. Opt., 49, 2471, 10.1364/AO.49.000C95 Wolk, 2013, Enhancement of flame development by microwave-assisted spark ignition in constant volume combustion chamber, Combust. Flame, 160, 1225, 10.1016/j.combustflame.2013.02.004 Hwang, 2016, Microwave-assisted plasma ignition in a constant volume combustion chamber, Combust. Flame, 167, 86, 10.1016/j.combustflame.2016.02.023 Schenk, 2014, The corona ignition system ecoflash: new results with cng engines and effects of engine-specific boundary conditions S. Yu, K. Xie, Q. Tan, M. Wang, M. Zheng, Ignition improvement of premixed methane-air mixtures by distributed spark discharge, SAE paper 2015-01-1889, SAE Briggs, 2014, Advanced ignition systems evaluations for high-dilution SI engines, SAE Int. J. Engines, 7, 10.4271/2014-01-2625 Singleton, 2011, The role of non-thermal transient plasma for enhanced flame ignition in C2H4-air, J. Phys. D Appl. Phys., 44, 10.1088/0022-3727/44/2/022001 Shukla, 2013, Effects of electrode geometry on transient plasma induced ignition, J. Phys. D Appl. Phys., 46, 10.1088/0022-3727/46/20/205201 Anokhin, 2015, Ignition of hydrocarbon: air mixtures by a nanosecond surface dielectric barrier discharge, Plasma Sources Sci. Technol., 24, 10.1088/0963-0252/24/4/045014 Boumehdi, 2015, Ignition of methane- and n-butane-containing mixtures at high pressures by pulsed nanosecond discharge, Combust Flame, 162, 1336, 10.1016/j.combustflame.2014.11.006 Shcherbanev, 2016, Multi-point ignition of hydrogen/air mixtures with single pulsed nanosecond surface dielectric barrier discharge Maly, 1979, Initiation and propagation of flame fronts in lean CH4-air mixtures by the three modes of the ignition spark, Symp. (Int.) Combust., 17, 821, 10.1016/S0082-0784(79)80079-X Ziegler, 1985, Ignition of lean methane-air mixtures by high pressure glow and arc discharges, Symp. (Int.) Combust., 20, 1817, 10.1016/S0082-0784(85)80679-2 R. Modien, M. Checkel, J. Dale, The effect of enhanced ignition systems on early flame development in quiescent and turbulent conditions, SAE Technical Paper No. 910564, SAE, 1991. Machala, 2014, Atmospheric pressure nanosecond pulsed discharge plasmas in low temperature plasma technology: methods and applications Pai, 2010, Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure, J. Appl. Phys., 107, 10.1063/1.3309758 Xu, 2014, Thermal and hydrodynamic effects of nanosecond discharges in atmospheric pressure air, J. Phys. D Appl. Phys., 47, 10.1088/0022-3727/47/23/235202 Law, 2006 Moffett, 2007, Investigation of statistical nature of spark ignition Ko, 1991, Spark ignition of propane-air mixtures near the minimum ignition energy: Part I. An experimental study, Combust. Flame, 83, 75, 10.1016/0010-2180(91)90204-O Zhang, 2017, Effects of water vapor dilution on the minimum ignition energy of methane, n-butane and n-decane at normal and reduced pressures, Fuel, 187, 111, 10.1016/j.fuel.2016.09.057 Chen, 2009, Effects of Lewis number and ignition energy on the determination of laminar flame speed using propagating spherical flames, Proc. Combust. Inst., 32, 1253, 10.1016/j.proci.2008.05.060 Pancheshnyi, 2006, Ignition of propane–air mixtures by a repetitively pulsed nanosecond discharge, IEEE Trans. Plasma Sci., 34, 2478, 10.1109/TPS.2006.876421 Kosarev, 2013, Nanosecond discharge ignition in acetylene-containing mixtures, Plasma Sources Sci. Technol., 22, 10.1088/0963-0252/22/4/045018