Multi-channel nanosecond discharge plasma ignition of premixed propane/air under normal and sub-atmospheric pressures
Tài liệu tham khảo
T. Mosbach, R. Sadanandan, W. Meier, R. Eggels, Experimental analysis of altitude relight under realistic conditions using laser and high-speed video techniques, GT2010-22625, ASME.
Lefebrave, 1999
Sun, 2013, Nonequilibrium plasma-assistant combustion: a review of recent progress, J. Plasma Fusion Res., 89, 208
Naegeli, 1991, Ignition study in a gas turbine combustor, Combust. Sci. Technol., 80, 165, 10.1080/00102209108951784
Correa, 1993, A review of NOx formation under gas-turbine combustion conditions, Combust. Sci. Technol., 87, 329, 10.1080/00102209208947221
Pucher, 2001, Enhanced ignition systems for aircraft altitude relight, 48, 611
G. Pucher, W.D. Allan, Turbine fuel ignition and combustion facility for extremely low temperature conditions, GT2004-53620 ASME.
Read, 2008
R.W. Read, Relight imaging at low temperature low pressure conditions, AIAA Paper. 2008-957 AIAA.
Lewis, 1987
Chen, 2007, Theoretical analysis of the evolution from ignition kernel to flame ball and planar flame, Combust. Theory Model., 11, 427, 10.1080/13647830600999850
Kelley, 2009, Critical radius for sustained propagation of spark-ignited spherical flames, Combust. Flame, 156, 1006, 10.1016/j.combustflame.2008.12.005
Chen, 2011, On the critical flame radius and minimum ignition energy for spherical flame initiation, Proc. Combust. Inst., 33, 1219, 10.1016/j.proci.2010.05.005
Ju, 2015, Plasma assisted combustion: Progress, challenges, and opportunities, Combust Flame, 162, 529, 10.1016/j.combustflame.2015.01.017
Starikovskaia, 2014, Plasma-assisted ignition and combustion: nanosecond discharges and development of kinetic mechanisms, J. Phys. D Appl. Phys., 47, 10.1088/0022-3727/47/35/353001
Starikovskii, 2005, Plasma-supported combustion, Proc. Combust. Inst., 30, 2405, 10.1016/j.proci.2004.08.272
Sun, 2012, Kinetic effects of non-equilibrium plasma-assisted methane oxidation on diffusion flame extinction limits, Combust. Flame, 159, 221, 10.1016/j.combustflame.2011.07.008
Xu, 2014
Xu, 2014, Schlieren imaging of shock-wave formation induced by ultrafast heating of a nanosecond repetitively pulsed discharge in air, IEEE Trans. Plasma Sci., 42, 2350, 10.1109/TPS.2014.2311328
Sun, 2013, Direct ignition and S-curve transition by in situ nanosecond pulsed discharge in methane/oxygen/helium counter-flow flame, Proc. Combust. Inst., 34, 847, 10.1016/j.proci.2012.06.104
Sun, 2014, In situ plasma activated low temperature chemistry and the S-curve transition in DME/oxygen/helium mixture, Combust. Flame, 161, 2054, 10.1016/j.combustflame.2014.01.028
A.Y. Starikovskiy, A. Rakitin, G. Correale, A. Nikipelov, T. Urushihara, T. Shiraishi, Ignition of hydrocarbon-air mixtures with non-equilibrium plasma at elevated pressures, AIAA Paper. 2012-0828, AIAA.
Starikovskiy, 2013, Plasma assisted ignition and combustion, Prog. Energy Combust. Sci., 39, 61, 10.1016/j.pecs.2012.05.003
Lefkowitz, 2015, Schlieren imaging and pulsed detonation engine testing of ignition by a nanosecond repetitively pulsed discharge, Combust. Flame, 162, 2496, 10.1016/j.combustflame.2015.02.019
Y. Ikeda, A. Nishiyama, M. Kaneko, Microwave enhanced ignition process for fuel mixture at elevated pressure of 1MPa, AIAA paper. 2009-223, AIAA.
Ikeda, 2010, Development of microwave-enhanced spark induced breakdown spectroscopy, Appl. Opt., 49, 2471, 10.1364/AO.49.000C95
Wolk, 2013, Enhancement of flame development by microwave-assisted spark ignition in constant volume combustion chamber, Combust. Flame, 160, 1225, 10.1016/j.combustflame.2013.02.004
Hwang, 2016, Microwave-assisted plasma ignition in a constant volume combustion chamber, Combust. Flame, 167, 86, 10.1016/j.combustflame.2016.02.023
Schenk, 2014, The corona ignition system ecoflash: new results with cng engines and effects of engine-specific boundary conditions
S. Yu, K. Xie, Q. Tan, M. Wang, M. Zheng, Ignition improvement of premixed methane-air mixtures by distributed spark discharge, SAE paper 2015-01-1889, SAE
Briggs, 2014, Advanced ignition systems evaluations for high-dilution SI engines, SAE Int. J. Engines, 7, 10.4271/2014-01-2625
Singleton, 2011, The role of non-thermal transient plasma for enhanced flame ignition in C2H4-air, J. Phys. D Appl. Phys., 44, 10.1088/0022-3727/44/2/022001
Shukla, 2013, Effects of electrode geometry on transient plasma induced ignition, J. Phys. D Appl. Phys., 46, 10.1088/0022-3727/46/20/205201
Anokhin, 2015, Ignition of hydrocarbon: air mixtures by a nanosecond surface dielectric barrier discharge, Plasma Sources Sci. Technol., 24, 10.1088/0963-0252/24/4/045014
Boumehdi, 2015, Ignition of methane- and n-butane-containing mixtures at high pressures by pulsed nanosecond discharge, Combust Flame, 162, 1336, 10.1016/j.combustflame.2014.11.006
Shcherbanev, 2016, Multi-point ignition of hydrogen/air mixtures with single pulsed nanosecond surface dielectric barrier discharge
Maly, 1979, Initiation and propagation of flame fronts in lean CH4-air mixtures by the three modes of the ignition spark, Symp. (Int.) Combust., 17, 821, 10.1016/S0082-0784(79)80079-X
Ziegler, 1985, Ignition of lean methane-air mixtures by high pressure glow and arc discharges, Symp. (Int.) Combust., 20, 1817, 10.1016/S0082-0784(85)80679-2
R. Modien, M. Checkel, J. Dale, The effect of enhanced ignition systems on early flame development in quiescent and turbulent conditions, SAE Technical Paper No. 910564, SAE, 1991.
Machala, 2014, Atmospheric pressure nanosecond pulsed discharge plasmas in low temperature plasma technology: methods and applications
Pai, 2010, Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure, J. Appl. Phys., 107, 10.1063/1.3309758
Xu, 2014, Thermal and hydrodynamic effects of nanosecond discharges in atmospheric pressure air, J. Phys. D Appl. Phys., 47, 10.1088/0022-3727/47/23/235202
Law, 2006
Moffett, 2007, Investigation of statistical nature of spark ignition
Ko, 1991, Spark ignition of propane-air mixtures near the minimum ignition energy: Part I. An experimental study, Combust. Flame, 83, 75, 10.1016/0010-2180(91)90204-O
Zhang, 2017, Effects of water vapor dilution on the minimum ignition energy of methane, n-butane and n-decane at normal and reduced pressures, Fuel, 187, 111, 10.1016/j.fuel.2016.09.057
Chen, 2009, Effects of Lewis number and ignition energy on the determination of laminar flame speed using propagating spherical flames, Proc. Combust. Inst., 32, 1253, 10.1016/j.proci.2008.05.060
Pancheshnyi, 2006, Ignition of propane–air mixtures by a repetitively pulsed nanosecond discharge, IEEE Trans. Plasma Sci., 34, 2478, 10.1109/TPS.2006.876421
Kosarev, 2013, Nanosecond discharge ignition in acetylene-containing mixtures, Plasma Sources Sci. Technol., 22, 10.1088/0963-0252/22/4/045018