A Review of Battery Fires in Electric Vehicles
Tóm tắt
Over the last decade, the electric vehicle (EV) has significantly changed the car industry globally, driven by the fast development of Li-ion battery technology. However, the fire risk and hazard associated with this type of high-energy battery has become a major safety concern for EVs. This review focuses on the latest fire-safety issues of EVs related to thermal runaway and fire in Li-ion batteries. Thermal runaway or fire can occur as a result of extreme abuse conditions that may be the result of the faulty operation or traffic accidents. Failure of the battery may then be accompanied by the release of toxic gas, fire, jet flames, and explosion. This paper is devoted to reviewing the battery fire in battery EVs, hybrid EVs, and electric buses to provide a qualitative understanding of the fire risk and hazards associated with battery powered EVs. In addition, important battery fire characteristics involved in various EV fire scenarios, obtained through testing, are analysed. The tested peak heat release rate (PHHR in MW) varies with the energy capacity of LIBs (
$$E_{B}$$
in Wh) crossing different scales as
$$PHRR = 2E_{B}^{0.6}$$
. For the full-scale EV fire test, limited data have revealed that the heat release and hazard of an EV fire are comparable to that of a fossil-fuelled vehicle fire. Once the onboard battery involved in fire, there is a greater difficulty in suppressing EV fires, because the burning battery pack inside is inaccessible to externally applied suppressant and can re-ignite without sufficient cooling. As a result, an excessive amount of suppression agent is needed to cool the battery, extinguish the fire, and prevent reignition. By addressing these concerns, this review aims to aid researchers and industries working with batteries, EVs and fire safety engineering, to encourage active research collaborations, and attract future research and development on improving the overall safety of future EVs. Only then will society achieve the same comfort level for EVs as they have for conventional vehicles.
Tài liệu tham khảo
Matulka R (2014) The history of the electric car. In: Department of Energy. https://www.energy.gov/articles/history-electric-car. Accessed 20 Oct 2018
Anderson CD, Anderson J (2010) Electric and hybrid cars, 2nd edn. McFarland & Company, Jefferson
Grauers A, Sarasini S, Karlström M, Industriteknik C (2013) Why electromobility and what is it? In: Sandén B (ed) Systems perspectives on electromobility. Chalmers University of Technology, Göteborg
BP (2018) Statistical review of world energy 2018. 1–53
Bisschop R, Willstrand O, Amon F, Rosengren M (2019) Fire safety of lithium-ion batteries in road vehicles. Borås
Bisschop R, Willstrand O, Rosengren M (2019) Handling lithium-ion batteries in electric vehicles—preventing and recovering from hazardous events. In: 1st International symposium on lithium battery fire safety. Hefei, China
National Transportation Safety Board (2018) Preliminary report: crash and post-crash fire of electric-powered passenger vehicle
CGTN (2019) Tesla car catches fire in China, investigation underway. https://news.cgtn.com/news/3d3d514d7a416a4d34457a6333566d54/index.html. Accessed 20 Mar 2019
Bangkok Post (2018) Porsche catches fire while charging. https://www.bangkokpost.com/thailand/general/1429518/porsche-catches-fire-while-charging. Accessed 20 Mar 2019
Loveday S (2018) BMW i3 REx burns after catching fire while parked in Spain. In: INSIDEEVs. https://insideevs.com/news/337258/bmw-i3-rex-burns-after-catching-fire-while-parked-in-spain/. Accessed 20 Mar 2019
Zhou X (2018) Frequent fire accidents on electric vehicle. Operators 10:65–66
National Transportation Safety Board (2018) Preliminary report: highway HWY18FH013. National Transportation Safety Board
Revill J (2018) Tesla crash may have triggered battery fire: Swiss firefighters
National Transportation Safety Board (2018) Preliminary report—battery fire in electric-powered passenger car. In: National Transportation Safety Board. https://www.ntsb.gov/investigations/accidentreports/pages/hwy18fh014-preliminary.aspx. Accessed 20 Oct 2018
Deick M Van (2018) Facebook. https://www.facebook.com/Marco.vandeick/posts/344761026325031. Accessed 20 Mar 2019
Gutman M, Yuon S (2018) Firefighters work 16 hours to put out fires in Tesla model S. In: ABC news. https://abcnews.go.com/Technology/tesla-opens-investigation-car-burst-flames-times/story?id=59930420. Accessed 19 Dec 2018
Wang Q, Ping P, Zhao X, et al (2012) Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources 208:210–224. https://doi.org/10.1016/j.jpowsour.2012.02.038
Wang Q, Mao B, Stoliarov SI, Sun J (2019) A review of lithium ion battery failure mechanisms and fire prevention strategies. Prog Energy Combust Sci 73:95–131. https://doi.org/10.1016/j.pecs.2019.03.002
Feng X, Ouyang M, Liu X, et al (2018) Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Storage Mater 10:246–267. https://doi.org/10.1016/j.ensm.2017.05.013
Ouyang D, Chen M, Huang Q, et al (2019) A Review on the thermal hazards of the lithium-ion battery and the corresponding countermeasures. Appl Sci Switz. https://doi.org/10.3390/app9122483
Evarts EC (2015) Lithium batteries: to the limits of lithium. Nature 526:S93–S95. https://doi.org/10.1038/526s93a
Moon G (2016) Renault-Samsung’s electric vehicle catches fire due to ignition from bonnet. In: ETRC·KGTLAB. http://www.ipnomics.net/?p=14858. Accessed 19 Dec 2018
Pecht M (2015) Safety. In: CALCE Battery Research Group. https://web.calce.umd.edu/batteries/safety.html. Accessed 19 Dec 2018
Home of EV (2018) What should we do during the EV fire? In: SOHU. https://www.sohu.com/a/233521985_526255. Accessed 19 Dec 2018
Hertzke P, Müller N, Schenk S, Wu T (2018) The global electric-vehicle market is amped upand on the rise. McKinsey Center for Future Mobility
Offer GJ (2015) Automated vehicles and electrification of transport. Energy Environ Sci 8:26–30. https://doi.org/10.1039/c4ee02229g
Frost & Sullivan (2018) Global electric vehicle market outlook, 2018
Egbue O, Long S (2012) Barriers to widespread adoption of electric vehicles: an analysis of consumer attitudes and perceptions. Energy Policy 48:717–729. https://doi.org/10.1016/j.enpol.2012.06.009
International Energy Agency (2018) Global EV outlook 2018: towards cross-modal electrification. IEA Publications, Paris. https://doi.org/10.1787/9789264302365-en
The Economist Intelligence Unit (2018) France ranked top for EV adoption in 2017. In: The Economist. http://www.eiu.com/industry/article/526381436/france-ranked-top-for-ev-adoption-in-2017/2018-02-02. Accessed 20 Mar 2019
Bjerkan KY, Nørbech TE, Nordtømme ME (2016) Incentives for promoting battery electric vehicle (BEV) adoption in Norway. Transp Res Part D 43:169–180. https://doi.org/10.1016/j.trd.2015.12.002
Service USC (2017) The Electric Vehicle Market—France. In: International Trade Administration. https://www.export.gov/article?id=E-Mobility-in-France. Accessed 19 Dec 2018
Germany Trade & Invest (2015) Electromobility in Germany: vision 2020 and beyond
Lu J (2018) Comparing U.S. and Chinese electric vehicle policies. In: Environmental and Energy Study Institute. https://www.eesi.org/articles/view/comparing-u.s.-and-chinese-electric-vehicle-policies. Accessed 19 Dec 2018
Council on Clean Transportation I (2015) Supporting the electric vehicle market in U.S. cities
Howell S, Lee H, Heal A (2014) Leapfrogging or stalling out? Electric vehicles in China. HKS Working Paper No RWP14-035. https://doi.org/10.2139/ssrn.2493131
Gibson R (2018) What can we learn from Japan about EV adoption? In: FleetCarma, August 22. https://www.fleetcarma.com/can-learn-japan-ev-adoption/. Accessed 19 Dec 2018
Industry Steering Committee (2009) Electric vehicle technology roadmap for Canada: a strategic vision for highway-capable battery-electric, plug-in and other hybrid-electric vehicles. Natural Resources Canada
Liu X, Wu Z, Stoliarov SI, et al (2016) Heat release during thermally-induced failure of a lithium ion battery: impact of cathode composition. Fire Saf J 85:10–22. https://doi.org/10.1016/j.firesaf.2016.08.001
Liu X, Stoliarov SI, Denlinger M, et al (2015) Comprehensive calorimetry of the thermally-induced failure of a lithium ion battery. J Power Sources 280:516–525. https://doi.org/10.1016/j.jpowsour.2015.01.125
Joey D (2016) Musk frustrated that Koch brothers spending millions to kill electric cars
Markus F (2016) 2017 Chevrolet Bolt EV drivetrain first look (w/Video). In: Motortrend Apr 6 2016. https://www.motortrend.com/cars/chevrolet/volt/2016/2017-chevrolet-bolt-ev-drivetrain-first-look-review/. Accessed 19 Dec 2018
Arman A (2017) EV power-up may lie with prismatic tech. In: New straits times. https://www.nst.com.my/cbt/2017/12/315288/ev-power-may-lie-prismatic-tech. Accessed 19 Dec 2018
(2019) Types of battery cells; cylindrical cell, button cell, pouch cell. In: Battery University. https://batteryuniversity.com/index.php/learn/article/types_of_battery_cells. Accessed 24 Apr 2019
Miles A (2018) The secret life of an EV battery. In: Sustainable Enterprises Media, Inc. https://cleantechnica.com/2018/08/26/the-secret-life-of-an-ev-battery/. Accessed 20 Mar 2019
Garcia-Valle R, Lopes JAP (2013) Electric vehicle integration into modern power networks. Springer, New York
SAMSUNG SDI The composition of EV batteries: cells? Modules? Packs? Let’s understand properly! http://www.samsungsdi.com/column/all/detail/54344.html. Accessed 20 Mar 2019
Timofeeva E (2017) Comparing electric cars and their batteries. In: Inlfluit energy. http://www.influitenergy.com/comparing-electric-cars-and-their-batteries/. Accessed 20 Mar 2019
Dinger A, Martin R, Mosquet X, Rabl M, Rizoulis D, Russo MS (2010) Batteries for electric cars: challenges, opportunities, and the outlook to 2020. The Boston Consulting Group
Hao M, Li J, Park S, et al (2018) Efficient thermal management of Li-ion batteries with a passive interfacial thermal regulator based on a shape memory alloy. Nat Energy 3:899–906. https://doi.org/10.1038/s41560-018-0243-8
Kolly JM, Panagiotou J, Czech BA (2014) Failure analysis techniques for a lithium-ion battery fire investigation. Fire in vehicles
Tesla (2019) Tesla Model S. https://www.tesla.com/models. Accessed 20 Mar 2019
Drysdale D (2011) An introduction to fire dynamics, 3rd ed. Wiley, Chichester
Andrea D (2018) A list of li-ion cells available today. In: Li-ion BMS. http://liionbms.com/php/cells.php. Accessed 20 Mar 2019
Le Houx J (2017) Developments in composite energy storage. energy technology, environment and sustainability reviews 24832413
Berjoza D, Jurgena I (2017) Effects of change in the weight of electric vehicles on their performance characteristics. Agron Res 15:952–963
Idaho National Laboratory (2016) 2014 BMW i3 review-advanced vehicle testing—baseline vehicle testing result. INL/MIS-15-34211
Compare side-by-side. In: US Department of Energy. https://www.fueleconomy.gov/feg/Find.do?action=sbs&id=38524&id=38569&id=38525&id=38640. Accessed 20 Mar 2019
Balakrishnan PG, Ramesh R, Prem Kumar T (2006) Safety mechanisms in lithium-ion batteries. J Power Sources 155:401–414. https://doi.org/10.1016/j.jpowsour.2005.12.002
Tobishima SI, Yamaki JI (1999) A consideration of lithium cell safety. J Power Sources 81–82:882–886. https://doi.org/10.1016/s0378-7753(98)00240-7
Lecocq A, Eshetu GG, Grugeon S, et al (2016) Scenario-based prediction of Li-ion batteries fire-induced toxicity. J Power Sources 316:197–206. https://doi.org/10.1016/j.jpowsour.2016.02.090
Gough N (2014) Sony warns some new laptop batteries may catch fire. In: The New York times. https://www.nytimes.com/2014/04/12/technology/sony-warns-some-new-laptop-batteries-may-catch-fire.html. Accessed 20 Mar 2019
Liu Y, Sun P, Niu H, et al (2020) Propensity to self-heating ignition of open-circuit pouch Lithium-ion battery pile on a hot boundary. Fire Saf J (under review)
He X, Restuccia F, Zhang Y, et al (2019) Experimental study of self-heating ignition of lithium-ion batteries during storage and transport: effect of the number of cells. Fire Technol (under review)
Blum A, Long RT (2015) Full-scale fire tests of electric drive vehicle batteries. SAE Int J Passeng Cars Mech Syst 8:565–572. https://doi.org/10.4271/2015-01-1383
Justen R, Schöneburg R (2011) Crash safety of hybrid and battery electric vehicles. In: 22nd Enhanced safety of vehicles conference, Washington
Wisch M, J. Ott RT, Léost Y, et al (2014) Recommendations and guidelines for battery crash safety and post-crash handling. EVERSAFE
Uwai H, Isoda A, Ichikawa H, Takahashi N (2011) Development of body structure for crash safety of the newly developed electric vehicle. In: 22nd Enhanced safety of vehicles conference, Washington
Fairley P (2010) Speed bumps ahead for electric-vehicle charging. IEEE Spectrum 47:13–14. https://doi.org/10.1109/mspec.2010.5372476
Zheng J, Engelhard MH, Mei D, et al (2017) Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nat Energy https://doi.org/10.1038/nenergy.2017.12
Larsson F, Mellander B-E (2017) Lithium-ion batteries used in electrified vehicles—general risk assessment and construction guidelines from a fire and gas release perspective. RISE Research Institutes of Sweden, Borås
Larsson F (2017) Lithium-ion battery safety-assessment by abuse testing, fluoride gas emissions and fire propagation. Chalmers University of Technology, Göteborg
Colella F (2016) Understanding electric vehicle fires. In: Fire protection and safety in tunnels. Stavanger
Glassman I, Yetter RA (2008) Combustion, 4th ed. Academic Press, New York
Babrauskas V (2003) Ignition handbook. Fire science publishers/society of fire protection engineers, Issaquah
Doughty DH, Pesaran AA (2012) Vehicle battery safety roadmap guidance. Renewable Energy Laboratory, Denver
Said AO, Lee C, Stoliarov SI, Marshall AW (2019) Comprehensive analysis of dynamics and hazards associated with cascading failure in 18650 lithium ion cell arrays. Appl Energy 248:415–428. https://doi.org/10.1016/j.apenergy.2019.04.141
Kumar K (2015) Flammability of plastics in today’s automobiles. SAE Tech Papers. https://doi.org/10.4271/2015-01-1380
Tewarson A (1997) A study of the flammability of plastics in vehicle components and parts. Technical Report FMRC JI 0B1R7RC, Factory Mutual Research Corporation, Norwood, MA
Iguchi M (2015) Divergence and convergence of automobile fuel economy regulations: a comparative analysis of EU, Japan and the US. Springer, Berlin
Ribière P, Grugeon S, Morcrette M, et al (2012) Investigation on the fire-induced hazards of Li-ion battery cells by fire calorimetry. Energy Environ Sci 5:5271–5280. https://doi.org/10.1039/c1ee02218k
U. S. Department of Energy (2018) FOTW #1010, January 1, 2018: All-electric light vehicle ranges can exceed those of some gasoline light vehicles January 1, 2018. https://www.energy.gov/eere/vehicles/articles/fotw-1010-january-1-2018-all-electric-light-vehicle-ranges-can-exceed-those. Accessed 20 Mar 2019
Fu Y, Lu S, Li K, et al (2015) An experimental study on burning behaviors of 18650 lithium ion batteries using a cone calorimeter. J Power Sources 273:216–222. https://doi.org/10.1016/j.jpowsour.2014.09.039
Chen M, Dongxu O, Liu J, Wang J (2019) Investigation on thermal and fire propagation behaviors of multiple lithium-ion batteries within the package. Appl Therm Eng 157:113750. https://doi.org/10.1016/j.applthermaleng.2019.113750
Chen M, He Y, De Zhou C, et al (2016) experimental study on the combustion characteristics of primary lithium batteries fire. Fire Technol 52:365–385. https://doi.org/10.1007/s10694-014-0450-1
Chen M, Zhou D, Chen X, et al (2015) Investigation on the thermal hazards of 18650 lithium ion batteries by fire calorimeter. J Therm Anal Calorim 122:755–763. https://doi.org/10.1007/s10973-015-4751-5
Larsson F, Andersson P, Blomqvist P, et al (2014) Characteristics of lithium-ion batteries during fire tests. J Power Sources 271:414–420. https://doi.org/10.1016/j.jpowsour.2014.08.027
Ping P, Wang QS, Huang PF, et al (2015) Study of the fire behavior of high-energy lithium-ion batteries with full-scale burning test. J Power Sources 285:80–89. https://doi.org/10.1016/j.jpowsour.2015.03.035
Sturk D, Hoffmann L, Ahlberg Tidblad A (2015) Fire tests on e-vehicle battery cells and packs. Traffic Injury Prev 16:159–164. https://doi.org/10.1080/15389588.2015.1015117
Wang Z, Yang H, Li Y, et al (2019) Thermal runaway and fire behaviors of large-scale lithium ion batteries with different heating methods. J Hazard Mater 379:120730. https://doi.org/10.1016/j.jhazmat.2019.06.007
Macneil DD, Lougheed G, Lam C, et al (2015) Electric vehicle fire testing. In: 8th EVS-GTR meeting, Washington, USA 1–5 June 2015
Iclodean C, Varga B, Burnete N, et al (2017) Comparison of different battery types for electric vehicles. In: IOP conference series: materials science and engineering
(2019) 2019 Kia Niro EV Specifications. In: Kia Media. https://www.kiamedia.com/us/en/models/niro-ev/2019/specifications. Accessed 20 Mar 2019
Watanabe N, Sugawa O, Suwa T, et al (2012) Comparison of fire behaviours of an electric-battery-powered behicle and gasoline-powered vehicle in a real-scale fire test. In: 2nd International conference on fires in vehicles, Chicago
Lecocq A, Bertana M, Truchot B, Marlair G (2012) Comparison of the fire consequences of an electric vehicle and an internal combustion engine vehicle. In: International conference on fires in vehicles—FIVE 2012. Chicago, United States, pp 183–194
WPI VH (2017) Li-ion battery energy stroage systems: Effect of separation deistances based on a radiation heat transfer analysis
Larsson F, Andersson P, Mellander B-E (2016) Lithium-ion battery aspects on fires in electrified vehicles on the basis of experimental abuse tests. Batteries 2:9. https://doi.org/10.3390/batteries2020009
Lam C, MacNeil D, Kroeker R, et al (2016) Full-scale fire testing of electric and internal combustion engine vehicles. In: 4th International conference on fire in vehicle, Baltimore
Stephens D, Stout P, Sullivan G, et al (2019) Lithium-ion battery safety issues for electric and plug-in hybrid vehicles. National Highway Traffic Safety Administration (Report No DOT HS 812 418), Washington, DC
Verband der Automobilindustrie (VDA) (2017) Accident assistance and recovery of vehicles with high-voltage systems. Verband der Automobilindustrie eV 1–30
Thermal A, Chamber T (2019) Analysis of li-ion battery gases vented in an inert atmosphere thermal test chamber. 5:1–17
Guo F, Ozaki Y, Nishimura K, et al (2019) Experimental study on flame stability limits of lithium ion battery electrolyte solvents with organophosphorus compounds addition using a candle-like wick combustion system. Combust Flame 207:63–70. https://doi.org/10.1016/j.combustflame.2019.05.019
(2019) Tesla vehicle safety report. Tesla
(2019) The Home Office, Road vehicle fires dataset, August 2019, UK. https://www.gov.uk/government/statistical-data-sets/fire-statistics-incident-level-datasets. Accessed 20 Mar 2019
Huang X, Nakamura Y (2020) A review of fundamental combustion phenomena in wire fires. Fire Technol 1–32. https://doi.org/10.1007/s10694-019-00918-5
EV century (2018) Lifan 650EV spontaneously ignited. In: GaoGong EV Web. http://www.gg-ev.com/asdisp2-65b095fb-26641-.html. Accessed 20 Mar 2019
Leung C (2015) First Hong Kong-designed electric bus rolls out for a month of test-drives on city’s roads. In: South China Morning Post. https://www.scmp.com/news/hong-kong/economy/article/1872155/first-hong-kong-designed-electric-bus-hits-citys-roads-month. Accessed 20 Mar 2019
Herron D (2016) Model S catches fire in Norway at supercharger, charging system seemingly at fault. In: The Long tail pipe. https://longtailpipe.com/2016/01/01/model-s-catches-fire-in-norway-at-supercharger-charging-system-seemingly-at-fault/. Accessed 20 Mar 2019
Blanco S (2013) Tesla model S catches fire near Seattle, no injuries reported. In: Autoblog. https://www.autoblog.com/2013/10/02/tesla-model-s-fire/. Accessed 20 Mar 2019
Lambert F (2017) Tesla Model S fire vs 35 firefighters—watch impressive operation after a high-speed crash. In: Electrek, 18 October 2017. https://electrek.co/2017/10/18/tesla-model-s-fire-high-speed-crash-video-impressive-operation/. Accessed 20 Mar 2019
Winkler S (2018) Final report—crash involving Tesla Model S—10400 South Bangerter Highway. South Jordan Police Department
Marshall R Report confirms sensor failure caused electric bus fire. In: The Frederick News Post, Nov 3, 2016. https://www.fredericknewspost.com/news/politics_and_government/levels_of_government/county/report-confirms-sensor-failure-caused-electric-bus-fire/article_7689d9d5-7ded-5586-b6d9-b2b2519ca568.html. Accessed 20 Mar 2019
Mengjie (2017) Tourist buses catch fire in Beijing, no casualties. In: XINHUANET. http://www.xinhuanet.com/english/2017-05/01/c_136248785.htm. Accessed 20 Mar 2019
Shiming Y (2017) Hundreds of electric buses ruined in fire. In: 21cnevcom. http://www.21cnev.com/html/201705/775455_1.html. Accessed 20 Mar 2019
Herron D (2015) Electric cars are safer than gasoline cars. In: Green transportation. https://greentransportation.info/ev-ownership/safer/index.html. Accessed 20 Mar 2019
Lu L, Han X, Li J, et al (2013) A review on the key issues for lithium-ion battery management in electric vehicles. J Power Sources 226:272–288. https://doi.org/10.1016/j.jpowsour.2012.10.060
Williams FA (1977) Mechanisms of fire spread. Symp (Int) Combust 16:1281–1294. https://doi.org/10.1016/s0082-0784(77)80415-3
Batenburg C Van (2014) Introduction to HEV, PHEV and EVs: For technicians and students new to high-voltage systems, 1st edn. Automotive Career Development Center
Warner JT (2015) The handbook of lithium-ion battery pack design: chemistry, components, types and terminology. Elsevier, Amsterdam
Beauregard GP, Phoenix AZ (2008) Report of investigation: Hybrids plus plug in hybrid electric vehicle. National Rural Electric Cooperative Association, Inc and US Department of Energy, Idaho National Laboratory by ETEC, Arlington
He X (2016) A mixed energy public bus caught on fire in Shenzhen. In: Inewenergy. http://www.inewenergy.com/news/guonei/031GO162016.html. Accessed 20 Mar 2019
China battery enterprise alliance (2016) Wuzhoulong hybrid bus fire. http://www.cbea.com/hydt/201603/16778.html. Accessed 20 Mar 2019
Chatman S (2018) Denton woman says Kia Won’t Reimburse Her After Car Catches Fire. In: NBC 5 Dallas-Fort Worth. https://www.nbcdfw.com/news/local/Denton-Woman-Says-Kia-Wont-Reimburse-Her-After-Car-Catches-Fire-491908751.html. Accessed 20 Mar 2019
(2018) Bt10m Porsche up in flames as battery charging goes wrong. In: THE NATION, 16 Mar 2018. https://www.nationthailand.com/news/30341102. Accessed 20 Mar 2019
Garche J, Brandt K (2019) Li-battery safety. Elsevier, Amsterdam
Tidblad AA (2018) Regulatory outlook on electric vehicle safety. In: 5th International conference on fires in vehicles. Borås
Cabrera Castillo E (2015) Advances in battery technologies for electric vehicles. Elsevier, Amsterdam
Doughty DH, Crafts CC (2006) FreedomCAR electrical energy storage system abuse test manual for electric and hybrid electric vehicle applications. SAND2005-3123
Ruiz V, Pfrang A, Kriston A, et al (2018) A review of international abuse testing standards and regulations for lithium ion batteries in electric and hybrid electric vehicles. Renew Sustain Energy Rev 81:1427–1452. https://doi.org/10.1016/j.rser.2017.05.195
Andreas Sater Boe (2017) Full scale electric vehicle fire test. In: Fire product search. https://www.fireproductsearch.com/full-scale-electric-vehicle-fire-test/. Accessed 20 Mar 2019
SAE (2009) Electric and hybrid electric vehicle rechargeable energy storage system (RESS) safety and abuse testing. SAE J2464_200911 2
SAE Ground Vehicle Technical Committees (2011) Electric and hybrid vehicle propulsion battery system safety standard
UL (2013) Batteries for use in electric vehicles. UL 2580
IEC (2010) Secondary lithium-ion cells for the propulsion of electric road vehicles—part 2: reliability and abuse testing
SAE (2011) Electric and hybrid electric vehicle rechargeable energy storages. SAE J2464 2
UNCECE (2015) Uniform provisions concerning the approval of vehicles with regard to specific requirements for the electric power train [2015/05]. Regulation No 100 of the Economic Commission for Europe of the United Nations (UNECE)
SAE (2013) Safety standard for electric and hybrid vehicle propulsion battery system utilizing lithium-based rechargeabel cell J2929-201302
Spotnitz R, Franklin J (2003) Abuse behavior of high-power, lithium-ion cells. J Power Sources 113:81–100. https://doi.org/10.1016/s0378-7753(02)00488-3
Zhang X (2011) Thermal analysis of a cylindrical lithium-ion battery. Electrochim Acta 56:1246–1255. https://doi.org/10.1016/j.electacta.2010.10.054
Eshetu GG, Jeong S, Pandard P, et al (2017) Comprehensive insights into the thermal stability, biodegradability, and combustion chemistry of pyrrolidinium-based ionic liquids. ChemSusChem 10:3146–3159. https://doi.org/10.1002/cssc.201701006
Spinner NS, Field CR, Hammond MH, et al (2015) Physical and chemical analysis of lithium-ion battery cell-to-cell failure events inside custom fire chamber. J Power Sources 279:713–721. https://doi.org/10.1016/j.jpowsour.2015.01.068
Chen S-C, Wang Y-Y, Wan C-C (2006) Thermal analysis of spirally wound lithium batteries. J Electrochem Soc 153:A637–A637. https://doi.org/10.1149/1.2168051
Santhanagopalan S, Ramadass P, Zhang J (Zhengming) (2009) Analysis of internal short-circuit in a lithium ion cell. J Power Sources 194:550–557. https://doi.org/10.1016/j.jpowsour.2009.05.002
Finegan D, Scheel M, Robinson JB, et al (2015) In-operando high-speed tomography of lithium-ion batteries during thermal runaway. Nat Commun 6:6924. https://doi.org/10.1038/ncomms7924
Cai L, White RE (2011) Mathematical modeling of a lithium ion battery with thermal effects in COMSOL Inc. Multiphysics (MP) software. J Power Sources 196:5985–5989. https://doi.org/10.1016/j.jpowsour.2011.03.017
Chen SC, Wan CC, Wang YY (2005) Thermal analysis of lithium-ion batteries. J Power Sources 140:111–124. https://doi.org/10.1016/j.jpowsour.2004.05.064
Kim G-H, Pesaran A, Spotnitz R (2007) A three-dimensional thermal abuse model for lithium-ion cells. J Power Sources 170:476–489. https://doi.org/10.1016/j.jpowsour.2007.04.018
Mahamud R, Park C (2011) Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity. J Power Sources 196:5685–5696. https://doi.org/10.1016/j.jpowsour.2011.02.076
US Department of Transportation (2014) Interim guidance for electric and hybrid-electric vehicles equipped with high-voltage batteries. DOT HS 811 575
Wang Q (2018) Study on fire and fire spread characteristics of lithium ion batteries. In: 2018 China national symposium on combustion
Andersson P, Brandt J, Willstrand O (2016) Full scale fire-test of an electric hybrid bus. SP Report
Łebkowski A (2017) Electric vehicle fire extinguishing system. Przegląd Elektrotechniczny 93:329–332. https://doi.org/10.15199/48.2017.01.77
Gardiner J (2017) The rise of electric cars could leave us with a big battery waste problem. In: The Guardian, 10 Aug 2017. https://www.theguardian.com/sustainable-business/2017/aug/10/electric-cars-big-battery-waste-problem-lithium-recycling. Accessed 20 Mar 2019
Polinares (2012) Fact Sheet: Lithium. GLOBAL 2000 VerlagsgesmbH
Kong L, Li C, Jiang J, Pecht MG (2018) Li-ion battery fire hazards and safety strategies. Energies 11:1–11. https://doi.org/10.3390/en11092191
NFPA (2018) Standard for porable fire extinguishers. NFPA 10
Schiemann M, Bergthorson J, Fischer P, et al (2016) A review on lithium combustion. Appl Energy 162:948–965. https://doi.org/10.1016/j.apenergy.2015.10.172
Andersson P, Wikman J, Arvidson M, et al (2017) Safe introduction of battery propulsion at sea. RISE Research Institutes of Sweden
Willstrand O (2019) To manage fire risks related to Li-ion batteries in vehicles Universitet/högskola/företag. RISE Research Institutes of Sweden 8P03983-03:
United Nations Economic and Social Council (UNECE) (1958) Agreement concerning the adoption of harmonized technical United Nations regulations for wheeled vehicles, equipment and parts which can be fitted and/or be used on wheeled vehicles and the conditions for reciprocal recognition of approvals granted on the. In: Unitied Nations Treaty. United Nations, Geneva
The Swedish Fire Protection Association (2016) SBF 127:16 Regler för brandskydd på arbetsfordon och -maskiner
The Swedish Fire Protection Association (2017) Regler för fast automatiskt släcksystem på bussar. SBF 128:3
RISE Research Institutes of Sweden (2018) SP Method 4912Method for testing the suppression performance of fire suppression systems intended forengine compartments of buses, coachesand other heavy vehicles
Andersson P, Sundström B (2014) Proceedings from 3rd international conference on fires in vehicles. In: FIVE—fires in vehicles. p 274
NFPA (2015) Emergency field guide. NFPA
(2019) Fire Suppression Systems. In: SafeQuip. http://www.safequip.co.za/product/ceodeux-suppression-system/. Accessed 20 Mar 2019
(2018) “Ferocious” fire ripped through Liverpool Echo Arena car park. In: BBC News. https://www.bbc.com/news/uk-england-merseyside-42533830. Accessed 20 Mar 2019
Joyeux D, Kruppa J, Cajot L-G, et al (2001) Demonstration of real fire tests in car parks and high rise buildings
Richard Read (2011) Largest electric-car charging site: Would You Believe Houston? In: Green Car Reports. https://www.greencarreports.com/news/1066818_largest-electric-car-charging-site-would-you-believe-houston. Accessed 19 Dec 2018
NFPA (2020) National electrical code. NFPA 70
Curtland C (2013) Parking lot EV chargers. In: Buildings. https://www.buildings.com/article-details/articleid/15485/title/parking-lot-ev-chargers/viewall/true. Accessed 19 Dec 2018
NFPA (2014) Hybrid and electric vehicle emergency field guide. 1–38