Ion efflux systems involved in bacterial metal resistances
Tóm tắt
Studying metal ion resistances gives us important insights into environmental processes and provides an understanding of basic living processes. This review concentrates on bacterial efflux systems for inorganic metal cations and anions, which have generally been found as resistance systems from bacteria isolated from metal-polluted environments. The protein products of the genes involved are sometimes prototypes of new families of proteins or of important new branches of known families. Sometimes, a group of related proteins (and presumedly the underlying physiological function) has still to be defined. For example, the efflux of the inorganic metal anion arsenite is mediated by a membrane protein which functions alone in Gram-positive bacteria, but which requires an additional ATPase subunit in some Gram-negative bacteria. Resistance to Cd2+ and Zn2+ in Gram-positive bacteria is the result of a P-type efflux ATPase which is related to the copper transport P-type ATPases of bacteria and humans (defective in the human hereditary diseases Menkes' syndrome and Wilson's disease). In contrast, resistance to Zn2+, Ni2+, Co2+ and Cd2+ in Gram-negative bacteria is based on the action of proton-cation antiporters, members of a newly-recognized protein family that has been implicated in diverse functions such as metal resistance/nodulation of legumes/cell division (therefore, the family is called RND). Another new protein family, named CDF for ‘cation diffusion facilitator’ has as prototype the protein CzcD, which is a regulatory component of a cobalt-zinc-cadmium resistance determinant in the Gram-negative bacteriumAlcaligenes eutrophus. A family for the ChrA chromate resistance system in Gram-negative bacteria has still to be defined.
Tài liệu tham khảo
Bairoch, A. 1993. A possible mechanism for metal-ion induced DNA-protein dissociation in a family of prokaryotic transcriptional regulators. Nucl. Acids Res. 21: 2515.
Bennett, R.L. and M.H. Malamy. 1970. Arsenate-resistant mutants ofEscherichia coli and phosphate transport. Biochem. Biophys. Res. Comm. 40: 490–503.
Bröer, S., G. Ji, A. Bröer and S. Silver. 1993. Arsenic efflux governed by the arsenic resistance determinant ofStaphylococcus aureus plasmid p1258. J. Bacteriol. 175: 3480–3485.
Bucheder, F. and E. Broda. 1974. Energy-dependent zinc transport byEscherichia coli. Eur. J. Biochem. 45: 555–559.
Bull, P.C. and D.W. Cox. 1994. Wilson disease and Menkes disease: new handles on heavy metal transport. Trends Genet. 10: 246–252.
Bull, P.C., G.R. Thomas, J.M. Rommens, J.R. Forbes and D.W. Cox. 1993. The Wilson Disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nature (Genetics) 5: 327–337.
Cervantes, C., H. Ohtake, L. Chu, T.K. Misra and S. Silver. 1990. Cloning, nucleotide sequence, and expression of the chromate resistance determinant ofPseudomonas aeruginosa plasmid pUM505. J. Bacteriol. 172: 287–291.
Chelly, J., Z. Tumer, T. Tonnesen, A. Petterson, Y. Ishikawabrush, N. Tommerup, N. Horn and A.P. Monaco. 1993. Isolation of a candidate gene for Menkes' disease that encodes a potential heavy metal binding protein. Nature (Genetics) 3: 14–19.
Chen, C.-M., T.P. Misra, S. Silver and B.P. Rosen. 1986. Nucleotide sequence of the structural genes for an anion pump. J. Biol. Chem. 261: 15030–15038.
Collard, J.-M., A. Provoost, S. Taghavi and M. Mergeay. 1993. A new type ofAlcaligenes eutrophus CH34 zinc resistance generated by mutations affecting regulation of thecnr cobalt-nickel resistance system. J. Bacteriol. 175: 779–794.
Conklin, D.S., J.A. McMaster, M.R. Culbertson and C. Kung. 1992. COT1, a gene involved in cobalt accumulation inSaccharomyces cerevisiae. Mol. Cell Biol. 12: 3678–3688.
Corbisier, P., G. Nuyts, G. Ji, M. Mergeay and S. Silver. 1993.luxAB gene fusions with the arsenic and cadmium resistance operons ofStaphylococcus aureus plasmid pl258. FEMS Microbiol. Lett. 110: 231–238.
Dressler, C., U. Kues, D.H. Nies and B. Friedrich. 1991. Determinants encoding multiple metal resistance in newly isolated copper-resistant bacteria. Appl. Environ. Microbiol. 57: 3079–3085.
Elvin, C.M., C.M. Hardy and H. Rosenberg. 1987. Molecular studies on the phosphate inorganic transport system ofEscherichia coli. In: Phosphate Metabolism and Cellular Regulation in Micro-organisms (Torriani-Gorini, A., F.G. Rothmann, S. Silver, A. Wright and E. Yagil, eds), pp. 156–158, American Society for Microbiology, Washington, DC.
Eriksson, P.-O. and L. Sahlman. 1993.1H NMR studies of the mercuric ion binding protein MerP: sequential assignment secondary structure and global fold of oxidized MerP. J. Biomolec. NMR 3: 613–626.
Fagan, M.J. and M.H. Saier, Jr. 1994. P-type ATPases of eukaryotes and bacteria: sequence comparisons and construction of phylogenetic trees. J. Mol. Evol. 38: 57–99.
Fath, M.J. and R. Kolter. 1993. ABC transporters: bacterial exporters. Microbiol. Rev. 57: 995–1017.
Gladysheva, T.B., K.L. Oden and B.P. Rosen. 1994. The ArsC arsenate reductase of plasmid R773. Biochemistry 33: 7288–7293.
Harold, F.M. and J.R. Baarda. 1966. Interaction of arsenate with phosphate-transport systems in wild type and mutantStreptococcus faecalis. J. Bacteriol. 91: 2257–2262.
Hsu, C. M., P. Kaur, R.F. Steiner and B.P. Rosen. 1991. Substrate-induced dimerization of the ArsA protein, the catalytic component of an anion-translocating ATPase. J. Biol. Chem. 266: 2327–2332.
Ji, G., E.A.E. Garber, L.G. Armes, C.-M. Chen, J.A. Fuchs and S. Silver. 1994. Arsenate reductase ofStaphylococcus aureus plasmid pl258: kinetics and spectroscopy. Biochemistry 33: 7294–7299.
Ji, G. and S. Silver. 1992. Regulation and expression of the arsenic resistance operon fromStaphylococcus aureus plasmid pl258. J. Bacteriol. 174: 3684–3694.
Ji, G. and S. Silver. 1992. Reduction of arsenate to arsenite by the ArsC protein of the arsenic resistance operon ofStaphylococcus aureus plasmid pl258. Proc. Natl. Acad. Sci. USA 89: 7974–7978.
Kaback, H.R. 1988. Site-directed mutagenesis and ion-gradient driven active transport: on the path of the proton. Annu. Rev. Physiol. 50:243–256.
Kamizomo, A., M. Nishizawa, Y. Teranishi, K. Murata and A. Kimura. 1989. Identification of a gene conferring resistance to zinc and cadmium in the yeastSaccharomyces cerevisiae. Mol. Gen. Genet. 219: 161–167.
Karkaria, C.E. and B.P. Rosen. 1991. Trinitrophenyl-ATP binding to the ArsA protein—the catalytic subunit of an anion pump. Arch. Biochem. Biophys. 288: 107–111.
Kaur, P. and B.P. Rosen. 1992. Mutagenesis of the C-Terminal nucleotide-binding site of an anion-translocating ATPase. J. Biol. Chem. 267: 19272–19277.
Kaur, P. and B.P. Rosen. 1993. Complementation between nucleotide binding domains in an anion-translocating ATPase. J. Bacteriol. 175: 351–357.
Kaur, P. and B.P. Rosen. 1994.in vitro assembly of an anionstimulated ATPase from peptide fragments.
Kiel, J.A.K.W., J.M. Boels, G. Beldman and G. Venema. 1991. TheglgB gene from the thermophileBacillus caldolyticus encodes a thermolabile branching enzyme. J. DNA Seq. Map 3: 221–232.
Kiel, J.A.K.W., J. M. Boels, G. Beldman and G. Venema. 1992. Molecular cloning and nucleotide sequence of the glycogen branching enzyme gene (glgB) fromBacillus stearothermophilus and expression inEscherichia coli andBacillus subtilis. Mol. Gen. Genet. 230: 136–144.
Krebs, M.P. and H.G. Khorana. 1993. Mechanism of light-dependent proton translocation by bacteriorhodopsin. J. Bacteriol. 175: 1555–1560.
Lebrun, M., A. Audurier and P. Cossart. 1994a. Plasmid-borne cadmium resistance genes inListeria monocytogenes are similar tocadA andcadC ofStaphylococcus aureus and are induced by cadmium. J. Bacteriol. 176: 3040–3048.
Lebrun, M., A. Audurier and P. Cossart. 1994b. Plasmid-borne cadmium resistance genes inListeria monocytogenes are present on Tn5422 a novel transposon closely related to Tn917. J Bacteriol. 176:3049–3061.
Lewis, K. 1994. Multidrug resistance pumps in bacteria: variations on a theme. Trends Biochem. Sci. 19: 119–123.
Liesegang, H., K. Lemke, R.A. Siddiqui and H.-G. Schlegel. 1993. Characterization of the inducible nickel and cobalt resistance determinant cnr from pMOL28 ofAlcaligenes eutrophus CH34. J. Bacteriol. 175: 767–778.
Luecke, H. and F.A. Quiocho. 1990. High specificity of a phosphate transport protein determined by hydrogen bonds. Nature Lond. 347: 402–406.
Ma, D., D.N. Cook, M. Albertie, N.G. Pon, H. Nikaido and J.E. Hearst. 1993. Molecular cloning ofacrA andacrE genes ofEscherichia coli. J. Bacteriol. 175: 6299–6313.
Maloney, P.C., S.V. Ambudkar, V. Anantharam, L.A. Sonna and Varadhachary. 1990. Anion-exchange mechanisms in bacteria. Microbiol. Rev. 54: 1–17.
Marger, M.D. and Saier, M.H. 1993. A major superfamily of transmembrane facilitators catalyzing uniport, symport and antiport. Trends Biochem. Sci. 18: 13–20.
Mercer, J.F.B., J. Livingston, B. Hall, J.A. Paynter, C. Begy, S. Chandrasekharappa, P. Lockhart, A. Grimes, M. Bhave, D. Siemieniak and T.W. Glover. 1993. Isolation of a partial candidate gene for Menkes disease by positional cloning. Nature (Genetics) 3: 20–25.
Mercer, J.F.B., A. Grimes, L. Ambrosini, P. Lockhart, J.A. Paynter, H. Dierick and T.W. Glover. 1994. Mutations in the murine homologue of the Menkes gene in dappled and blotchy mice. Nature (Genetics) 6: 374–378.
Mergeay, M., D. Nies, H.G. Schlegel, J. Gerits, P. Charles and F. VanGijsegem. 1985.Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J. Bacteriol. 162: 328–334.
Mobley, H.L.T. and B.P. Rosen. 1982. Energetics of plasmidmediated arsenate resistance inEscherichia coli. Proc. Natl Acad. Sci. USA 79: 6119–6122.
Nakata, A.M., M. Amemura, K. Makimo and H. Shinegawa. 1987. Genetic and biochemical analysis of the phosphate-specific transport system inEscherichia coli. In: Phosphate Metabolism and Cellular Regulation in Microorganisms (Torriani-Gorini, A., F.G. Rothmann, S. Silver, A. Wright and E. Yagil, eds), pp. 150–155, American Society for Microbiology, Washington, DC.
Nies, A., D.H. Nies and S. Silver. 1989. Cloning and expression of plasmid genes encoding resistances to chromate and cobalt inAlcaligenes eutrophus. J. Bacteriol. 171: 5065–5070.
Nies, A., D.H. Nies and S. Silver. 1990. Nucelotide sequence and expression of a plasmid-encoded chromate resistance determinant fromAlcaligenes eutrophus. J. Biol. Chem. 265: 5648–5653.
Nies, D.H. 1992a. Resistance to cadmium, cobalt, zinc, and nickel in microbes. Plasmid 27: 17–28.
Nies D.H. 1992b. CzcR and CzcD, gene products affecting regulation of resistance to cobalt, zinc and cadmium (czc system) inAlcaligenes eutrophus. J. Bacteriol. 174: 8102–8110.
(Reference deleted in proof.)
Nies, D.H., M. Mergeay, B. Friedrich and H.G. Schlegel. 1987. Cloning of the plasmid coded resistance to cobalt, zinc, and cadmium fromAlcaligenes eutrophus CH34. J. Bacteriol. 167: 4865–4868.
Nies, D.H., A. Nies, L. Chu and S. Silver. 1989. Expression and nucelotide sequence of a plasmid-determined divalent cation efflux system fromAlcaligenes eutrophus. Proc. Natl Acad. Sci. USA 86: 7351–7355.
Nies, D.H. and S. Silver. 1989. Metal ion uptake by plasmidfree metal-sensitiveAlcaligenes eutrophus strain. J. Bacteriol. 171: 4073–4075.
Nies, D.H. and S. Silver. 1989. Plasmid-determined inducible efflux is responsible for resistance to cadmium, zinc and cobalt inAlcaligenes eutrophus. J. Bacteriol. 171: 896–900.
Novick, R.P. and C. Roth. 1968. Plasmid-linked resistance to inorganic salts inStaphylococcus aureus. J. Bacteriol. 95: 1335–1342.
Novick, R.P., R.P. Murphy, T.J. Gryczan, E. Barone and I. Edelman. 1979. Penicillinase plasmids ofStaphylococcus aureus: restriction-deletion maps. Plasmid 2: 109–129.
Nucifora, G., L. Chu, T.K. Misra and S. Silver. 1989. Cadmium resistance fromStaphylococcus aureus plasmid, pl258cadA results from a cadmium-efflux ATPase. Proc. Natl Acad. Sci. USA 86: 3544–3548.
Oden, K.L., T.B. Gladysheva and B.P. Rosen. 1994. Arsenate reduction by the plasmid-encoded ArsC protein is coupled to glutathione. Mol. Microbiol. 12: 301–306.
Odermatt, A., H. Suter, R. Krapf and M. Solioz. 1993. Primary structure of two P-type ATPases involved in copper homeostasis inEnterococcus hirae. J. Biol. Chem. 268: 12775–12777.
Ohtake, H., C. Cervantes and S. Silver. 1987. Decreased chromate uptake inPseudomonas fluorescens carrying a chromate resistance plasmid. J. Bacteriol. 169: 3853–3856.
Perry, R.D. and S. Silver. 1982. Cadmium and manganese transport inStaphylococcus aureus membrane vesicles. J. Bacteriol. 150: 973–976.
Poole, K. and R.E.W. Hancock. 1984. Phosphate transport inPseudomonas aeruginosa. Eur. J. Biochem. 144: 607–612.
Poole, K., K. Krebes, C. McNally and S. Neshat. 1993. Multiple antibiotic resistance inPseudomonas aeruginosa: evidence for involvement of an efflux operon. J. Bacteriol. 175: 7363–7372.
Rao, N.N. and A. Torriani. 1990. Molecular aspects of phosphate transport inEscherichia coli. Mol. Microbiol. 4: 1083–1090.
Rosen, B.P. and M.G. Borbolla. 1984. A plasmid-encoded arsenite pump produces arsenite resistance inEscherichia coli. Biochem. Biophys. Res. Comm. 124: 760–765.
Rosen, B.P., U. Weigel, C. Karkaria and P. Gangola. 1988. Molecular characterization of an anion pump. The arsA gene product is an arsenite (antimonate)-stimulated ATPase. J. Biol. Chem. 263: 3067–3070.
Rosenberg, H. 1987. Phosphate transport in prokaryotes. In: Ion Transport in Prokaryotes (Rosen, B.P. and S. Silver, eds.), pp. 205–248, Academic Press, San Diego.
Rosenberg, H., R. G. Gerdes and K. Chegwidden. 1977. Two systems for the uptake of phosphate inEscherichia coli. J. Bacteriol. 131: 505–511.
Rosenstein, R., A. Perschel, B. Wieland and F. Götz. 1992. Expression and regulation of the antimonite, arsenite and arsenate resistance operon ofStaphylococcus xylosus plasmid pSX267. J. Bacteriol. 174: 3676–3683.
Sahlman, L. and E.G. Skärfstad. 1993. Mercuric ion binding abilities of MerP variants containing only one cysteine. Biochem. Biophys. Res. Commun. 196: 583–588.
Saier, M. H., Jr. 1994. Computer-aided analysis of transport protein sequences: gleaning evidence concerning function, structure, biogenesis, and evolution Microbiol. Rev. 58: 71–93.
Saier, M.H., Jr., R. Tam, A. Reizer and J. Reizer. 1994. Two novel families of bacterial membrane proteins concerned with nodulation, cell division and transport. Mol. Microbiol. 11: 841–847.
San Francisco, M.J.D., L.S. Tisa and B.P. Rosen. 1989. Identification of the membrane component of the anion pump encoded by the arsenical resistance operon of R-factor R773. Mol. Microbiol. 3: 15–21.
Schmidt, T. and H.G. Schlegel. 1994. Combined nickel-cobaltcadmium resistance encoded by thencc locus ofAlcaligenes xylosoxidans 31A. J. Bacteriol. 176: 7045–7054.
Sensfuss, C. and H.G. Schlegel. 1988. Plasmid pMOL28-encoded resistance to nickel is due to specific efflux. FEMS Microbiol. Lett. 55: 295–298.
Siddiqui, R.A. and H.G. Schlegel. 1987. Plasmid pMOL28 mediated inducible nickel resistance inAlcaligenes eutrophus CH34. FEMS Microbiol. Lett. 43: 9–13.
Siddiqui, R.A., K. Benthin and H.G. Schlegel. 1989. Cloning of pMOL28-encoded nickel resistance genes and expression of the genes inAlcaligenes eutrophus andPseudomonas spp. J. Bacteriol. 171: 5071–5078.
Silver, S., K. Budd, K.M. Leahy, W.V. Shaw, D. Hammond, R.P. Novick, G.R. Willsky, M.H. Malamy and H. Rosenberg. 1981. Inducible plasmid-determined resistance to arsenate, arsenite, and antimony (III) inEscherichia coli andStaphylococcus aureus. J. Bacteriol. 146: 983–996.
Silver, S., G. Ji, S. Bröer, S. Dey, D. Dou and B.P. Rosen. 1993. Orphan enzyme or patriarch of a new tribe: the arsenic resistance ATPase of bacterial plasmids. Mol. Microbiol. 8: 637–642.
Silver, S. and D. Keach. 1982. Energy-dependent arsenate efflux: the mechanism of plasmid-mediated resistance. Proc. Natl Acad. Sci. USA 79: 6114–6118.
Silver, S., G. Nucifora, L. Chu and T.K. Misra. 1989. Bacterial resistance ATPases: primary pumps for exporting toxic cations and anions. Trends Biochem. Sci. 14: 76–80.
Silver, S., G. Nucifora and L.T. Phung. 1993. Human Menkes X-chromosome disease and the staphylococcal cadmium-resistance ATPase: a remarkable similarity in protein sequences. Mol. Microbiol. 10: 7–12.
Silver, S. and M. Walderhaug. 1992. Gene regulation of plasmid-and chromosomal-determined inorganic ion transport in bacteria. Microbiol. Rev. 56: 195–228.
Surin, B.P., G.B. Cox and H. Rosenberg 1987. Molecular studies on the phosphate-specific transport system ofEscherichia coli In: Phosphate Metabolism and Cellular Regulation in Microorganisms (Torriani-Gorini, A., F.G. Rothmann, S. Silver, A. Wright and E. Yagil, eds), pp. 145–149, American Society for Microbiology, Washington, DC.
Tisa, L.S. and B.P. Rosen. 1900. Molecular characterization of an anion pump. The ArsB protein is the membrane anchor for the ArsA protein. J. Biol. Chem. 265: 190–194.
Torriani, A. 1990. From cell membranes to nucleotides: the phosphate regulon inEscherichia coli. Bioessays 12: 493–507.
Tsai, K.-J. and A.L. Linet. 1993. Formation of a phosphorylated enzyme intermediate by thecadA Cd2+-ATPase. Arch. Biochem. Biophys. 305: 267–270.
Tsai, K.-J., K.P. Yoon and A.R. Lynn. 1992. ATP-dependent cadmium transport by thecadA cadmium resistance determinant in everted membrane vesicles ofBacillus subtilis. J. Bacteriol. 174: 116–121.
Turner, R.J., Y. Hou, J.H. Weiner and D.E. Taylor. 1992. The arsenical ATPase efflux pump mediates tellurite resistance. J. Bacteriol. 174: 3092–3094.
Tynecka, Z., Z. Gos and J. Zajac. 1981a. Reduced cadmium transport determined by a plasmid inStaphylococcus aureus. J. Bacteriol. 147: 305–312.
Tynecka, Z., Z. Gos and J. Zajac. 1981b. Energy-dependent efflux of cadmium coded by a plasmid resistance determinant inStaphylococcus aureus. J. Bacteriol. 147: 313–319.
Vulpe, C., B. Levinson, S. Whitney, S. Packman and J. Gitschier. 1993. Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Nature (Genetics) 3: 7–13.
Wanner, B.L. 1990. Phosphate assimilation and its control of gene expression inEscherichia coli. In: The Molecular Basis of Bacterial Metabolism (Hauska, G. and R. Thauer, eds), pp. 152–163, Springer Verlag, Heidelberg.
Weiss, A.A., S. Silver and T.G. Kinscherf. 1978. Cation transport alteration associated with plasmid-determined resistance to cadmium inStaphylococcus aureus. Antimicrob. Agents Chemother. 14: 856–865.
Willksy, G.R. and M.H. Malamy. 1980a. Characterization of two genetically separable inorganic phosphate transport systems inEscherichia coli. J. Bacteriol. 144: 356–365.
Willsky, G.R. and M.H. Malamy. 1980b. Effect of arsenate on inorganic phosphate transport inEscherichia coli. J. Bacteriol. 144: 366–374.
Wu, J. and B.P. Rosen. 1991. The ArsR protein is a trans-acting regulatory protein. Molec. Microbiol. 5: 1331–1336.
Wu, J. and B.P. Rosen. 1993a. The arsD gene encodes a second trans-acting regulatory protein of the plasmid-encoded arsenical resistance operon. Mol. Microbiol. 8: 615–623.
Wu, J. and B.P. Rosen. 1993b. Metalloregulated expression of thears operon. J. Biol. Chem. 268: 52–58.
Wu, J., L.S. Tisa and B.P. Rosen. 1992. Membrane topology of the ArsB protein, the membrane subunit of an anion-translocating ATPase. J. Biol. Chem. 267: 12570–12576.
Yoon, K.P., T.K. Misra and S. Silver. 1991. Regulation of the cadA cadmium resistance determinant ofStaphylococcus aureus. J. Bacteriol. 173: 7643–7649.
Yoon, K.P. and S. Silver. 1991. A second gene in theStaphylococcus aureus cadA cadmium resistance determinant. J. Bacteriol. 173: 7636–7642.