Maxent modeling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch., an extremely endangered conifer from southwestern China

Global Ecology and Conservation - Tập 10 - Trang 139-146 - 2017
Qin Aili1,2, Bo Liu3,1, Quanshui Guo2, Rainer W. Bussmann4, Ma Fanqiang2, Zunji Jian5, Gexi Xu5, Shunxiang Pei5
1Institute of Botany, Chinese Academy of Science, Beijing, China
2Research Institute of Forestry Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
3College of Life and Environmental Science, MinZu University of China, Beijing, China
4William L. Brown Center, Missouri Botanical Garden, St. Louis, USA
5Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Anderson, 2004, Modeling species’ distributions for preliminary conservation assessments: an implementation with the spiny pocket mice (Heteromys) of Ecuador, Biol. Cons., 116, 167, 10.1016/S0006-3207(03)00187-3

Collins, 2006, The community climate system model version 3 (CCSM3), J. Clim., 19, 2122, 10.1175/JCLI3761.1

Cui, 2015, Exploring the formation of a disjunctive pattern between eastern Asia and north America based on fossil evidence from Thuja (Cupressaceae), PLoS One, 10, e0138544, 10.1371/journal.pone.0138544

Elith, 2006, Novel methods improve prediction of species’ distributions from occurrence data, Ecography, 29, 129, 10.1111/j.2006.0906-7590.04596.x

Elith, 2009, Species distribution models: ecological explanation and prediction across space and time, Ann. Rev. Ecol. Evol. System., 40, 677, 10.1146/annurev.ecolsys.110308.120159

Elith, 2011, A statistical explanation of maxent for ecologists, Diversity and Distributions, 17, 43, 10.1111/j.1472-4642.2010.00725.x

Farjon, A. and Page, C.N. (1999) Conifers: Status Survey and Conservation Action Plan. IUCN-SSC Conifer Specialist Group, Gland, Switzerland and Cambridge, UK: IUCN.

Fielding, 1997, A review of methods for the measurement of prediction errors in conservation presence/absence models, Environ. Conserv., 24, 38, 10.1017/S0376892997000088

Franklin, 2009

Garcia, 2013, Predicting geographic distribution and habitat suitability due to climate change of selected threatened forest tree species in the Philippines, Appl. Geogr., 44, 12, 10.1016/j.apgeog.2013.07.005

Graham, 2003, Confronting multicollinearity in ecological multiple regression, Ecology, 84, 2809, 10.1890/02-3114

Guan, 1986, A preliminary study on the Cathaya mixed forest in Jinfoshan, Sichuan, Acta Bot. Sin., 28, 646

Hasumi, 2004

Hijmans, 2005, Very high resolution interpolated climate surfaces for global land areas, Int. J. Climatol., 25, 1965, 10.1002/joc.1276

Kaeslin, E., Redmon, I. and Dudley, N., 2012. Wildlife in a changing climate. Rome, Italy: Food and Agriculture Organization Forestry Paper.

Kumar, 2009, Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia, J. Ecol. Nat. Environ., 1, 94

Kunstler, 2007, Fagus sylvatica L. recruitment across a fragmented Mediterranean landscape, importance of long distance effective dispersal, abiotic conditions and biotic interactions, Diversity Distrib., 13, 799, 10.1111/j.1472-4642.2007.00404.x

Ma, 2014, Impact of climate change on suitable distribution range and spatial pattern in Amygdalus mongolica, Chin. J. Plant Ecol., 38, 262, 10.3724/SP.J.1258.2014.00023

Marcer, 2013, Using species distribution modelling to disentangle realised versus potential distributions for rare species conservation, Biol. Cons., 166, 221, 10.1016/j.biocon.2013.07.001

2005

Newbold, 2010, Applications and limitations of museum data for conservation and ecology with particular attention to species distribution models, Progr. Phys. Geogr., 34, 3, 10.1177/0309133309355630

Pearson, 2005, Long-distance plant dispersal and habitat fragmentation: identifying conservation targets for spatial landscape planning under climate change, Biol. Cons., 123, 389, 10.1016/j.biocon.2004.12.006

Pearson, 2007, Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar, J. Biogeogr., 34, 102, 10.1111/j.1365-2699.2006.01594.x

Peng, 2008, Reticulate evolution in Thuja inferred from multiple gene sequences: Implications for the study of biogeographical disjunction between eastern Asia and North America, Mol. Phylogenet. Evol., 47, 1190, 10.1016/j.ympev.2008.02.001

Peterson, 2011

Peterson, 2001, Predicting species invasions using ecological niche modeling: new approaches from bioinformatics attack a pressing problem, Bioscience, 51, 363, 10.1641/0006-3568(2001)051[0363:PSIUEN]2.0.CO;2

Phillips, S.J. (2004) A maximum entropy approach to species distribution modeling. In: Proceedings of the 21st International Conference on Machine Learning, Banff, Canada.

Phillips, 2008, Transferability, sample selection bias and background data in presence-only modeling: a response to Peterson et al. and (2007), Ecography, 31, 272, 10.1111/j.0906-7590.2008.5378.x

Phillips, 2006, Maximum entropy modeling of species geographic distributions, Ecol. Model., 190, 231, 10.1016/j.ecolmodel.2005.03.026

Raxworthy, 2003, Predicting distributions of known and unknown reptile species in Madagascar, Nature, 426, 837, 10.1038/nature02205

Rebelo, 2010, Ground validation of presence-only modelling with rare species: a case study on barbastelles Barbastella barbastellus (Chiroptera: Vespertilionidae), J. Appl. Ecol., 47, 410, 10.1111/j.1365-2664.2009.01765.x

Sardà-Palomera, 2012, Mapping from heterogeneous biodiversity monitoring data sources, Biodivers. Conserv., 21, 2927, 10.1007/s10531-012-0347-6

Shao, 2009, Effects of sample size and species traits on performance of BIOCLIM in predicting geographical distribution of tree species-a case study with 12 deciduous Quercus species indigenous to China, Chin. J. Plant Ecol., 33, 870

Swets, 1988, Measuring the accuracy of diagnostic systems, Science, 240, 1285, 10.1126/science.3287615

Tang, 2002, Tertiary relic deciduous forests on a humid subtropical mountain, Mt. Emei, Sichuan, China, Folia Geobot., 37, 93, 10.1007/BF02803193

Tang, 2011, Population structure of relict Metasequoia glyptostroboides and its habitat fragmentation and degradation in south-central China, Biol. Cons., 144, 279, 10.1016/j.biocon.2010.09.003

Tang, 2015, Community structure and survival of Tertiary relict Thuja sutchuenensis (Cupressaceae) in the subtropical Daba Mountains, southwestern China, PLoS One, 10, e0125307, 10.1371/journal.pone.0125307

Tang, 2012, Evidence for the persistence of wild Ginkgo biloba (Ginkgoaceae) populations in the Dalou Mountains, southwestern China, Am. J. Bot., 99, 1408, 10.3732/ajb.1200168

Thorn, 2009, Ecological niche modelling as a technique for assessing threats and setting conservation priorities for Asian slow Lorises (Primates: Nycticebus), Diversity and Distributions, 15, 289, 10.1111/j.1472-4642.2008.00535.x

Wilson, 2011, Applying species distribution modelling to identify areas of high conservation value for endangered species: a case study using Margaritifera margaritifera (L.), Biol. Cons., 144, 821, 10.1016/j.biocon.2010.11.014

Wisz, 2008, Effects of sample size on the performance of species distribution models, Diversity-Distribut., 14, 763, 10.1111/j.1472-4642.2008.00482.x

Xiang, 2002, Thuja sutchuenensis : a rediscovered species of the Cupressaceae, Bot. J. Linnean. Soc., 140, 93, 10.1046/j.1095-8339.2002.00087.x

Yang, 2013, Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills, Ecol. Eng., 51, 83, 10.1016/j.ecoleng.2012.12.004