EM procedures using mean field-like approximations for Markov model-based image segmentation
Tài liệu tham khảo
Geman, 1984, Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images, IEEE Trans. Pattern Anal. Mach. Intell., 6, 721, 10.1109/TPAMI.1984.4767596
Besag, 1986, On the statistical analysis of dirty pictures, J. R. Stat. Soc. Ser. B, 48, 259
Besag, 1975, Statistical analysis of non-lattice data, Statistician, 24, 179, 10.2307/2987782
Chalmond, 1989, An iterative Gibbsian technique for reconstruction of m-ary images, Pattern Recognition, 22, 747, 10.1016/0031-3203(89)90011-3
Chandler, 1987
Zhang, 1992, The mean field theory in EM procedures for Markov random fields, IEEE Trans. Signal Process., 40, 2570, 10.1109/78.157297
Zhang, 1993, The mean field theory in EM procedures for Markov random fields, IEEE Trans. Image Process., 2, 27, 10.1109/83.210863
McLachlan, 2000
Dempster, 1997, Maximum likelihood from incomplete data via the EM algorithm (with discussion), J. R. Stat. Soc. Ser. B, 39, 1
V.M. Dang, Classification de données spatiales: modèles probabilistes et critères de partionnement, Ph.D. Thesis, Université de Technologie de Compiègne, France, 1998.
Geiger, 1991, Parallel and deterministic algorithms from MRFs, IEEE Trans. Pattern Anal. Mach. Intell., 13, 401, 10.1109/34.134040
J. Zerubia, R. Chellappa, Mean field approximation using compound Gauss-Markov random field for edge detection and image restoration, in: proceedings of the ICASSP’90, 1990, pp. 2193–2196.
Yuille, 1990, Generalized deformable models, statistical physics and matching problems, Neural Comput., 2, 1, 10.1162/neco.1990.2.1.1
Jaakkola, 1998, Improving the mean field approximation via the use of mixture distributions, 163
Hofmann, 1997, Pairwise data clustering by deterministic annealing, IEEE Trans. Pattern Anal. Mach. Intell., 19, 1, 10.1109/34.566806
G. Celeux, F. Forbes, N. Peyrard, EM procedures using mean field-like approximations for Markov model-based image segmentation, Research Report No. 4105, Inria, available at http://www.inria.fr/rrrt/rr-4105.html, 2001.
Wu, 1995, Cluster expansions for the deterministic computation of Bayesian estimators based on Markov random fields, IEEE Trans. Pattern Anal. Mach. Intell., 17, 275, 10.1109/34.368192
Ambroise, 1998, Convergence proof of an EM-type algorithm for spatial clustering, Pattern Recognition Lett., 19, 919, 10.1016/S0167-8655(98)00076-2
Qian, 1991, Estimation of parameters in hidden Markov models, Philos. Trans. R. Soc. London Ser. A, 337, 407, 10.1098/rsta.1991.0132
G.E.B. Archer, D.M. Titterington, Parameter estimation for hidden Markov chains, J. Stat. Plann. Inference, 2002, in press.
Dunmur, 1998, Mean fields and two-dimensional Markov random fields in image analysis, Pattern Anal. Appl., 1, 248, 10.1007/BF01234771
Celeux, 1992, A classification EM algorithm for clustering and two stochastic versions, Comput. Stat. Data Anal., 14, 315, 10.1016/0167-9473(92)90042-E
Celeux, 1985, The SEM algorithm, Comput. Stat. Quart., 2, 73
Swendsen, 1987, Nonuniversal critical dynamics in Monte Carlo simulations, Phys. Rev. Lett., 58, 86, 10.1103/PhysRevLett.58.86
Titterington, 1984, Comments on a paper by S.L. Sclove, IEEE Trans. Pattern Anal. Mach. Intell., 6, 656, 10.1109/TPAMI.1984.4767581
Wei, 1990, A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms, J. Am. Stat. Assoc., 85, 699, 10.2307/2290005
Comer, 2000, The EM/MPM algorithm for segmentation of textures images, IEEE Trans. Image Process., 9, 1731, 10.1109/83.869185
X. Descombes, J.-F. Mangin, E. Pechersky, M. Sigelle, Fine structures preserving Markov model for image processing, in:Proceedings of the Nineth Scandinavian Conference on Image Analysis, Uppsala, Sweden, 6–9 June 1995, pp. 349–356.
Tjelmeland, 1998, Markov random field with higher-order interactions, Scand. J. Stat., 25, 415, 10.1111/1467-9469.00113