Methodological Approaches to the Improvement of Technology of Engineering Fluorocomposites
Tóm tắt
Structural and technological aspects of obtaining composite materials based on polytetrafluoroethylene are considered. It is shown that, due to the manifestation of the inertness of the components in the processes of interfacial interaction with an increase in the degree of filling, a structural paradox appears within the framework of the traditional technological paradigm. This paradox consists in a proportional decrease in the tensile-strength parameter of fluorocomposites with an increase in their degree of filling. Based on the concept of energy and technological matching of components, technological principles are proposed for eliminating the negative impact of the structural paradox by controlling the structure of fluorocomposites at various levels of organization: molecular, supramolecular, phase and interphase. Effective methods have been developed for manufacturing products from highly filled fluorocomposites containing 25–35 wt % and having parameters of deformation–strength characteristics that are 1.5–2.0 times higher than the parameters of the analogues Flubon and Fluvis.
Tài liệu tham khảo
A. A. Okhlopkova, O. A. Andriyanova, and S. N. Popov, Modification of Polymers with Ultrafine Compounds (Izd. Sib. Otdel. Ross. Akad. Nauk, Yakutsk, 2003) [in Russian].
Yu. K. Mashkov, Z. N. Ovchar, M. Yu. Baibaratskaya, and O. A. Mamaev, Polymer Composite Materials in Tribotechnics (Nedra-Biznestsentr, Moscow, 2004) [in Russian].
A. A. Okhlopkova, P. N. Petrova, and O. V. Gogoleva, “Development of polymer nanocomposites for tribotechnical purposes,” Perspektivnye Mater., No. 6, 213–217 (2008).
B. M. Ginzburg and D. T. Tochil’nikov, “Effect of fullerene-containing additives on the bearing capacity of fluoroplastics under friction,” Tech. Phys. 46, 249–253 (2001).
V. V. Voropaev, S. V. Avdeichik, and V. A. Struk, “Technology for the formation of high-strength wear-resistant fluorine composites,” Vestsi NAN Belarusi: Ser. Fiz.-Tekhn. Navuk, No. 1, 51–59 (2014).
S. V. Avdeichik, Yu. N. Zakharov, M. V. Ishchenko, E. V. Ovchinnikov, Yu. V. Shcherba, and A. V. Struk, Fluorine-Containing Wear Inhibitors for Metal-Polymer Systems (Tekhnalogiya, Minsk, 2011) [in Russian].
V. A. Shelestova, Candidate’s Dissertation in Engineering (Inst. Mech. Metal-Polym. Syst., Nat. Acad. Sci. Belarus, Gomel’, 2002).
L. N. Ignatieva, V. A. Mashchenko, A. Shaulov, et al. “Composite materials based on F-4MB fluoroplastic and low-melting oxyfluoride glass,” Russ. J. Phys. Chem. A 93, 1652–1656 (2019).
G. S. Baronin, V. M. Buznik, G. Yu. Yurkov, et al., “Study of structure and properties of polymer composites based on polytetrafluoroethylene and cobalt nanoparticles,” Inorg. Mater.: Appl. Res. 6, 179–186 (2015).
A. A. Mikhalchan, V. A. Lysenko, and P. Yu. Sal’nikova, “Carbon-fluoropolymer composites: increased electrical conductivity,” Fibre Chem. 44, 46–49 (2012).
A. P. Vasil’ev, A. A. Okhlopkova, T. S. Struchkova, et al., “Development of antifriction materials based on polytetrafluoroethylene with carbon fibers,” Vestn. Sev.-Vost. Fed. Univ., No. 3, 39–47 (2017).
Yu. K. Mashkov, O. A. Kurguzova, and A. S. Ruban, “Development and research of wear-resistant polymer nanocomposites,” Vestn. Sib. Gos. Avtomob. Dorozh. Inst. 15, 36–45 (2018).
M. A. Markova and M. E. Gotovtseva, “Study of composites based on PTFE and carbon fillers,” Vestn. Nauki Obrazov. Severo-Zapada Rossii 3, 1–6 (2017).
S. V. Avdeichik, “Introduction to the Physics of Nanocomposite Engineering Materials,” in S. V. Avdeichik, V. A. Liopo, A. A. Ryskulov, and V. A. Struk, Ed. by V. A. Liopo and V. A. Struk (Grodno State Agrar. Univ., Grodno, 2009).
V. A. Liopo, “Dimensional boundary between nano- and bulk state: theory and experiment,” Vesnik Grodno Derzh. Univ. Ser. 2: Mat. Fizika. Infarmatyka, Vylichal’naya Tekh. Kiravanne, No. 2, 65–71 (2007).
A. G. Gusev and A. A. Rempel, Nanocrystalline Materials (Cambridge Intern. Sci. Publ, Cambridge, 2004).
Cao Guozhong and Wang Ying, Nanostructures and Nanomaterials, 2nd ed. (World Scientific, 2011).
V. A. Struk, E. V. Ovchinnikov, Yu. S. Boiko, V. A. Gubanov, and P. E. Teoichanskaya, BY Patent No. 6350, Nats. Tsentr Intellekt. Ulanasci, No. 2 (2000).
V. A. Struk, S. V. Avdeichik, M. V. Ishchenko, R. V. Ishchenko, D. A. Prushak, and A. S. Prushak, BY Patent No. 17248, Nats. Tsentr Intellekt. Ulasnasci, No. 3, 102 (2013).
V. G. Sorokin, A. S. Balykin, V. A. Struk, E. V. Ovchinnikov, D. A. Prushak, and S. V. Avdeichik, BY No. 17130, Nats. Tsentr Intellekt. Ulanasci, No. 3, 105 (2013).
TU 6-05-041-781–84 Blanks from Fluoroplastic Compositions F4UV15 (Flubon-15) and F4UV20 (Flubon-20) [in Russian].
TU RB 03535279.071–99 Blanks from Fluoroplastic Composition “Fluvis” [in Russian].