Image-level classification by hierarchical structure learning with visual and semantic similarities
Tài liệu tham khảo
Bo, 2013, Multipath sparse coding using hierarchical matching pursuit, 660
Boiman, 2008, In defense of nearest-neighbor based image classification, 1
K. Chatfield, K. Simonyan, A. Vedaldi, A. Zisserman, return of the devil in the details: delving deep into convolutional nets, 2014. arXiv:1405.3531.
Cinbis, 2012, “image categorization using fisher kernels of non-iid image models”, 2184
J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, T. Darrell, “deCAF: a deep convolutional activation feature for generic visual recognition”, 2013. [cs.CV]. arXiv:1310.1531.
M. Everingham, L. Gool, C. Williams, J. Winn, A. Zisserman, The PASCAL visual object classes challenge 2012 (VOC 2012) results. http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html.
M. Everingham, A. Zisserman, C. Williams, L.V. Gool, The PASCAL visual object classes challenge 2007 (VOC 2007) results, technical report, pascal challenge, 2007.
G. Griffin, A. Holub, P. Perona, Caltech-256 object category dataset, technical report, caltech, 2007.
Gonzalez, 2016, “An investigation on the use of local multi-resolution patterns for image classification”, Inf. Sci., 361-362, 1, 10.1016/j.ins.2016.04.044
H. Harzallah, F. Jurie, C. Schmid, combining efficient object localization and image classification, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2009.237C244.
Hong, 2013, Image-based 3d human pose recovery with locality sensitive sparse retrieval, 2103
Hong, 2015, Multimodal deep autoencoder for human pose recovery, IEEE Trans. Image Process., 24, 5659, 10.1109/TIP.2015.2487860
Hong, 2015, Multi-view ensemble manifold regularization for 3d object recognition, Inf. Sci., 320, 395, 10.1016/j.ins.2015.03.032
Krizhevsky, 2012, Imagenet classification with deep convolutional neural networks, 1097
Li, 2010, Objectbank: a high-level image representation for scene classification & semantic feature sparsification, 1378
Ng, 2002, On spectral clustering: analysis and an algorithm, 849
Oquab, 2014, Learning and transferring mid-level image representations using convolutional neural networks, 1717
Sanchez, 2013, Image classification with the fisher vector: Theory and practice, Int. J. Comput. Vision, 105, 222, 10.1007/s11263-013-0636-x
P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, Y.L. Cun, Overfeat: Integrated recognition, localization and detection using convolutional networks, 2013. arXiv:1312.6229.
K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, 2014. [cs.CV]. arXiv:1409.1556.
Sohn, 2011, Efficient learning of sparse, distributed, convolutional feature representations for object recognition, 2643
Tan, 2016, Weakly supervised metric learning for traffic sign recognition in a LIDAR-equipped vehicle, IEEE Trans. Intell. Transp. Syst., 17, 1415, 10.1109/TITS.2015.2506182
Torresani, 2010, Efficient object category recognition using classesmes, 776
Wang, 2010, Locality-constrained linear coding for image classification, 3360
Wang, 2014, Detecting human action as the spatio-temporal tube of maximum mutual information, IEEE Trans. Circuits Syst. Video Technol., 24, 277, 10.1109/TCSVT.2013.2276856
Wei, 2016, HCP: A flexible CNN framework for multi-label image classification, IEEE Trans. Pattern Anal. Mach. Intell., 38, 1901, 10.1109/TPAMI.2015.2491929
Xu, 2016, Multi-loss regularized deep neural network, IEEE Trans. Circuits Syst. Video Technol., 26, 2273, 10.1109/TCSVT.2015.2477937
Yang, 2016, Exploit bounding box annotations for multi-label object recognition, 280
Yang, 2009, Linear spatial pyramid matching using sparse coding for image classification, 1794
Yu, 2014, Click prediction for web image reranking using multimodal sparse coding, IEEE Trans. Image Process., 23, 2019, 10.1109/TIP.2014.2311377
Yu, 2014, Semantic preserving distance metric learning and applications, Inf. Sci., 281, 674, 10.1016/j.ins.2014.01.025
Yu, 2016, Deep multimodal distance metric learning using click constraints for image ranking, IEEE Trans. Cybern.
Yuan, 2016, High-order local ternary patterns with locality preserving projection for smoke detection and image classification, Inf. Sci., 372, 225, 10.1016/j.ins.2016.08.040
Zeiler, 2013, Visualizing and understanding convolutional networks, CoRR
Zepeda, 2015, Exemplar SVMs as visual feature encoders, 3052
Zhang, 2015, Beyond explicit codebook generation: visual representation using implicitly transferred codebooks, IEEE Trans. Image Process., 24, 5777, 10.1109/TIP.2015.2485783
Zhang, 2014, Object categorization in sub-semantic space, Neurocomputing, 142, 248, 10.1016/j.neucom.2014.03.059
Zhang, 2017, Incremental codebook adaptation for visual representation and categorization, IEEE Trans. Cybern.
Zhang, 2017, Multi-view label sharing for visual representations and classifications, IEEE Trans. Multimed, Accepted.
Zhang, 2017, Structured weak semantic space construction for visual categorization, IEEE Trans. Neural Network Learn. Syst.
Zhang, 2015, Image classification using boosted local features with random orientation and location selection, Inf. Sci., 310, 118, 10.1016/j.ins.2015.03.011
Zhang, 2017, Contextual exemplar classifier based image representation for classification, IEEE Trans. Circuits Syst. Video Technol., 27, 1691, 10.1109/TCSVT.2016.2527380
Zhang, 2017, Fine-grained image classification via low-rank sparse coding with general and class-specific codebooks, IEEE Trans. Neural Network Learn. Syst., 28, 1550, 10.1109/TNNLS.2016.2545112
Zhang, 2014, Image classification by non-negative sparse coding, correlation constrained low-rank and sparse decomposition, Comput. Vision Image Understanding, 123, 14, 10.1016/j.cviu.2014.02.013
Zhang, 2011, Image classification by non-negative sparse coding, low-rank and sparse decomposition, 1673
Zhang, 2017, Bundled local features for image representation, IEEE Trans. Circuits Syst. Video Technol.
Zhang, 2016, Boosted random contextual semantic space based representation for visual recognition, Inf. Sci., 369, 160, 10.1016/j.ins.2016.06.029
Zhang, 2017, Image classification by search with explicitly and implicitly semantic representations, Inf. Sci., 376, 125, 10.1016/j.ins.2016.10.019
Zhang, 2016, Image class prediction by joint object, context and background modeling, IEEE Trans. Circuits Syst. Video Technol.
Zhang, 2015, Spatial-aware object-level saliency prediction by learning graphlet hierarchies, IEEE Trans. Indust. Electron., 62, 1301, 10.1109/TIE.2014.2336602