Quantifying soot nanostructures: Importance of image processing parameters for lattice fringe analysis

Combustion and Flame - Tập 211 - Trang 430-444 - 2020
Sebastian A. Pfau1, Antonino La Rocca1, Michael W. Fay1,2
1Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK
2Nanoscale and Microscale Research Centre, University of Nottingham, University Park, Nottingham, NG7 2RD, UK

Tài liệu tham khảo

Broday, 2011, Deposition of fractal-like soot aggregates in the human respiratory tract, J. Aerosol Sci., 42, 372, 10.1016/j.jaerosci.2011.03.001 Oberdörster, 1995, Association of particulate air pollution and acute mortality: involvement of ultrafine particles?, Inhal. Toxicol., 7, 111, 10.3109/08958379509014275 Mari, 2014, Effects of soot deposition on particle dynamics and microbial processes in marine surface waters, Glob. Biogeochem. Cycles., 28, 662, 10.1002/2014GB004878 Bond, 2013, Bounding the role of black carbon in the climate system: a scientific assessment, J. Geophys. Res. Atmos., 118, 5380, 10.1002/jgrd.50171 Shindell, 2012, Simultaneously mitigating near-term climate change and improving human health and food security, Science, 335, 183, 10.1126/science.1210026 Heywood, 1988 1994, in: Soot Formation in Combustion: Mechanisms and Models, Springer, Berlin, Heidelberg, 3 H. Richter, J.B. Howard, Formation of polycyclic aromatic hydrocarbons and their growth to soot – a review of chemical reaction pathways, 2000. doi:10.1016/S0360-1285(00)00009-5. Tang, 2019, Effects of fuel structure on structural characteristics of soot aggregates, Combust. Flame, 199, 301, 10.1016/j.combustflame.2018.10.033 Araki, 2018, Influence of aliphatic side chains of aromatic hydrocarbons on soot formation: experimental and numerical investigation, Combust. Flame, 194, 195, 10.1016/j.combustflame.2018.04.034 Maricq, 2012, Soot formation in ethanol/gasoline fuel blend diffusion flames, Combust. Flame, 159, 170, 10.1016/j.combustflame.2011.07.010 D'Anna, 2007, Effect of fuel/air ratio and aromaticity on sooting behavior of premixed heptane flames, Energy Fuels, 21, 2655, 10.1021/ef070159y D'Anna, 2009, Effect of fuel/air ratio and aromaticity on the molecular weight distribution of soot in premixed n-heptane flames, Proc. Combust. Inst., 32, 803, 10.1016/j.proci.2008.06.198 Guerrero Peña, 2017, Physicochemical properties of soot generated from toluene diffusion flames: effects of fuel flow rate, Combust. Flame, 178, 286, 10.1016/j.combustflame.2017.01.009 Guerrero Peña, 2018, Effect of fuel flow rate on the characteristics of soot generated from unsubstituted and disubstituted aromatic hydrocarbon flames: experimental and numerical study, Combust. Flame, 190, 224, 10.1016/j.combustflame.2017.12.010 Wang, 2014, Impact of fuel and injection system on particle emissions from a GDI engine, Appl. Energy, 132, 178, 10.1016/j.apenergy.2014.06.012 Li, 2015, Effect of multiple-injection strategies on diesel engine exhaust particle size and nanostructure, J. Aerosol Sci., 89, 69, 10.1016/j.jaerosci.2015.07.008 He, 2012, Effects of gasoline direct injection engine operating parameters on particle number emissions, Energy Fuels, 26, 2014, 10.1021/ef201917p Wang, 2015, Effect of intake pre-heating and injection timing on combustion and emission characteristics of a methanol fumigated diesel engine at part load, Fuel, 159, 796, 10.1016/j.fuel.2015.07.032 Saffaripour, 2015, Effect of drive cycle and gasoline particulate filter on the size and morphology of soot particles emitted from a gasoline-direct-injection vehicle, Environ. Sci. Technol., 49, 11950, 10.1021/acs.est.5b02185 Bonatesta, 2014, Part-load particulate matter from a GDI engine and the connection with combustion characteristics, Appl. Energy, 124, 366, 10.1016/j.apenergy.2014.03.030 Pfau, 2019 Song, 2007, Impact of alternative fuels on soot properties and DPF regeneration, Combust. Sci. Technol., 179, 1991, 10.1080/00102200701386099 Lapuerta, 2012, Effect of fuel on the soot nanostructure and consequences on loading and regeneration of diesel particulate filters, Combust. Flame, 159, 844, 10.1016/j.combustflame.2011.09.003 La Rocca, 2013, The nanostructure of soot-in-oil particles and agglomerates from an automotive diesel engine, Tribol. Int., 61, 80, 10.1016/j.triboint.2012.12.002 Gaddam, 2013, Physical and chemical characterization of SIDI engine particulates, Combust. Flame, 160, 2517, 10.1016/j.combustflame.2013.05.025 Di Liberto, 2016, Computational analysis of the influence of exhaust gas recirculation on the rate of soot transfer to lubricating engine oil Stehouwer, 2002 Sato, 1999 Berbezier, 1986, The role of carbon in lubricated mild wear, Tribol. Int., 19, 115, 10.1016/0301-679X(86)90016-2 Uy, 2014, Characterization of gasoline soot and comparison to diesel soot: morphology, chemistry, and wear, Tribol. Int., 80, 198, 10.1016/j.triboint.2014.06.009 Pfau, 2018, Comparative nanostructure analysis of gasoline turbocharged direct injection and diesel soot-in-oil with carbon black, Carbon, 139, 342, 10.1016/j.carbon.2018.06.050 Orhan, 2016, Characterisation of flame-generated soot and soot-in-oil using electron tomography volume reconstructions and comparison with traditional 2D-TEM measurements, Tribol. Int., 104, 272, 10.1016/j.triboint.2016.09.015 Haffner-Staton, 2018, Progress towards a methodology for high throughput 3D reconstruction of soot nanoparticles via electron tomography, J. Microsc., 10.1111/jmi.12680 Marsh, 1971, Quantitative micrography of carbon black microstructure, Carbon, 9, 797, 10.1016/0008-6223(71)90013-3 Palotás, 1996, An application of image analysis in high-resolution transmission electron microscopy, Microsc. Res. Tech., 33, 266, 10.1002/(SICI)1097-0029(19960215)33:3<266::AID-JEMT4>3.0.CO;2-O Sharma, 1999, A new quantitative approach for microstructural analysis of coal char using HRTEM images, Fuel, 78, 1203, 10.1016/S0016-2361(99)00046-0 Shim, 2000, A methodology for analysis of 002 lattice fringe images and its application to combustion-derived carbons, Carbon, 38, 29, 10.1016/S0008-6223(99)00096-2 Galvez, 2002, Carbon nanoparticles from laser pyrolysis, Carbon, 40, 2775, 10.1016/S0008-6223(02)00195-1 Yehliu, 2011, Development of an HRTEM image analysis method to quantify carbon nanostructure, Combust. Flame, 158, 1837, 10.1016/j.combustflame.2011.01.009 Wu, 2016, Morphology, fractal dimension, size and nanostructure of exhaust particles from a spark-ignition direct-injection engine operating at different air–fuel ratios, Fuel, 185, 709, 10.1016/j.fuel.2016.08.025 Bogarra, 2017, Influence of on-board produced hydrogen and three way catalyst on soot nanostructure in gasoline direct injection engines, Carbon, 120, 326, 10.1016/j.carbon.2017.05.049 Rohani, 2017, Morphology and nano-structure of soot in diesel spray and in engine exhaust, Fuel, 203, 47, 10.1016/j.fuel.2017.04.093 Botero, 2016, HRTEM evaluation of soot particles produced by the non-premixed combustion of liquid fuels, Carbon, 96, 459, 10.1016/j.carbon.2015.09.077 Toth, 2019, Real-time, in situ, atomic scale observation of soot oxidation, Carbon, 145, 149, 10.1016/j.carbon.2019.01.007 Toth, 2013, A novel framework for the quantitative analysis of high resolution transmission electron micrographs of soot I. Improved measurement of interlayer spacing, Combust. Flame, 160, 909, 10.1016/j.combustflame.2013.01.002 Toth, 2013, A novel framework for the quantitative analysis of high resolution transmission electron micrographs of soot II. Robust multiscale nanostructure quantification, Combust. Flame, 160, 920, 10.1016/j.combustflame.2013.01.003 Wang, 2016, Quantifying curvature in high-resolution transmission electron microscopy lattice fringe micrographs of coals, Energy Fuels, 30, 2694, 10.1021/acs.energyfuels.5b02907 Wang, 2017, Improved quantification of curvature in high-resolution transmission electron microscopy lattice fringe micrographs of soots, Carbon, 117, 174, 10.1016/j.carbon.2017.02.059 Pré, 2013, A new approach to characterize the nanostructure of activated carbons from mathematical morphology applied to high resolution transmission electron microscopy images, Carbon, 52, 239, 10.1016/j.carbon.2012.09.026 Toth, 2012, Quantitative differentiation of poorly ordered soot nanostructures: a semi-empirical approach, Fuel, 99, 1, 10.1016/j.fuel.2012.04.013 Gonzalez, 2002 Müller, 2007, Bulk and surface structural investigations of diesel engine soot and carbon black, Phys. Chem. Chem. Phys., 9, 4018, 10.1039/B704850E Botero, 2019, Internal structure of soot particles in a diffusion flame, Carbon, 141, 635, 10.1016/j.carbon.2018.09.063 Apicella, 2015, Soot nanostructure evolution in premixed flames by high resolution electron transmission microscopy (HRTEM), Proc. Combust. Inst., 35, 1895, 10.1016/j.proci.2014.06.121 Apicella, 2019, Laser-induced structural modifications of differently aged soot investigated by HRTEM, Combust. Flame, 204, 13, 10.1016/j.combustflame.2019.02.026 Yehliu, 2011, A comparison of soot nanostructure obtained using two high resolution transmission electron microscopy image analysis algorithms, Carbon, 49, 4256, 10.1016/j.carbon.2011.06.003 Russo, 2015, Effect of the flame environment on soot nanostructure inferred by Raman spectroscopy at different excitation wavelengths, Combust. Flame, 162, 2431, 10.1016/j.combustflame.2015.02.011 Sadezky, 2005, Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information, Carbon, 43, 1731, 10.1016/j.carbon.2005.02.018 Seong, 2013, Evaluation of Raman parameters using visible Raman microscopy for soot oxidative reactivity, Energy Fuels, 27, 1613, 10.1021/ef301520y Gaddam, 2016, Quantification of nano-scale carbon structure by HRTEM and lattice fringe analysis, Pattern Recognit. Lett., 76, 90, 10.1016/j.patrec.2015.08.028 Otsu, 1979, A threshold selection method from gray-level histograms, IEEE Trans. Syst. Man Cybern., 9, 62, 10.1109/TSMC.1979.4310076 Wan, 2018, On imaging nascent soot by transmission electron microscopy, Combust. Flame, 198, 260, 10.1016/j.combustflame.2018.09.021 Kondo, 2013 Zuiderveld, 1994, Contrast limited adaptive histogram equalization, 474 Botero, 2016, PAH structure analysis of soot in a non-premixed flame using high-resolution transmission electron microscopy and optical band gap analysis, Combust. Flame, 164, 250, 10.1016/j.combustflame.2015.11.022 Vander Wal, 2005 Thévenaz, 1998, A pyramid approach to sub-pixel registration based on intensity mailing address, IEEE Trans. Image Process., 7, 27, 10.1109/83.650848 Zhang, 2015, Nanostructure analysis of in-flame soot particles under the influence of jet–jet interactions in a light-duty diesel engine, SAE Int. J. Engines, 8, 2213, 10.4271/2015-24-2444 Xu, 2014, Effects of injection timing on exhaust particle size and nanostructure on a diesel engine at different loads, J. Aerosol Sci., 76, 28, 10.1016/j.jaerosci.2014.05.002 Al-Qurashi, 2008, Impact of exhaust gas recirculation (EGR) on the oxidative reactivity of diesel engine soot, Combust. Flame, 155, 675, 10.1016/j.combustflame.2008.06.002 Patel, 2012, Morphology, structure and chemistry of extracted diesel soot: part II: X-ray absorption near edge structure (XANES) spectroscopy and high resolution transmission electron microscopy, Tribol. Int., 52, 17, 10.1016/j.triboint.2012.02.022