Analysis of DNA methylome and transcriptome profiling following Gibberellin A3 (GA3) foliar application in Nicotiana tabacum L.

Springer Science and Business Media LLC - Tập 23 - Trang 543-556 - 2018
Raman Manoharlal1, G. V. S. Saiprasad1, Vinay Kaikala1, R. Suresh Kumar1, Ales Kovařík2
1Corporate R&D (Agrisciences), ITC Limited, ITC Life Science and Technology Centre (LSTC), Bengaluru, India
2Academy of Sciences of the Czech Republic, Institute of Biophysics, v.v.i, Brno, Czech Republic

Tóm tắt

The present work investigated a comprehensive genome-wide landscape of DNA methylome and its relationship with transcriptome upon gibberellin A3 (GA3) foliar application under practical field conditions in solanaceae model, Nicotiana tabacum L. Methylated DNA Immunoprecipitation-Sequencing (MeDIP-Seq) analysis uncovered over 82% (18,456) of differential methylated regions (DMRs) in intergenic-region. Within protein-coding region, 2339 and 1685 of identified DMRs were observed in genebody- and promoter-region, respectively. Microarray study revealed 7032 differential expressed genes (DEGs) with 3507 and 3525 genes displaying up- and down-regulation, respectively. Integration analysis revealed 520 unique non-redundant annotated DMRs overlapping with DEGs. Our results indicated that GA3 induced DNA hypo- as well as hyper-methylation were associated with both gene-silencing and -activation. No complete biasness or correlation was observed in either of the promoter- or genebody-regions, which otherwise showed an overall trend towards GA3 induced global DNA hypo-methylation. Taken together, our results suggested that differential DNA methylation mediated by GA3 may only play a permissive role in regulating the gene expression.

Tài liệu tham khảo

Aran, D., Toperoff, G., Rosenberg, M., & Hellman, A. (2011). Replication timing-related and gene body-specific methylation of active human genes. Human Molecular Genetics, 20(4), 670–680. https://doi.org/10.1093/hmg/ddq513. Ashikawa, I. (2001). Gene-associated CpG islands in plants as revealed by analyses of genomic sequences. The Plant Journal, 26(6), 617–625. Bird, A. (2002). DNA methylation patterns and epigenetic memory. Genes & Development, 16(1), 6–21. https://doi.org/10.1101/gad.947102. Bujnicki, J. M., Feder, M., Radlinska, M., & Rychlewski, L. (2001). mRNA:guanine-N7 cap methyltransferases: identification of novel members of the family, evolutionary analysis, homology modeling, and analysis of sequence-structure-function relationships. BMC Bioinformatics, 2, 2. Chan, S. W., Henderson, I. R., & Jacobsen, S. E. (2005). Gardening the genome: DNA methylation in Arabidopsis thaliana. Nature Reviews Genetics, 6(5), 351–360. https://doi.org/10.1038/nrg1601. da Huang, W., Sherman, B. T., & Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 4(1), 44–57. https://doi.org/10.1038/nprot.2008.211. Desikan, R. S. A. H.-M., Hancock, J. T., & Neill, S. J. (2001). Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiology, 127(1), 159–172. Edwards, R., Dixon, D. P., & Walbot, V. (2000). Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends in Plant Science, 5(5), 193–198. Exner, V., Taranto, P., Schonrock, N., Gruissem, W., & Hennig, L. (2006). Chromatin assembly factor CAF-1 is required for cellular differentiation during plant development. Development, 133(21), 4163–4172. https://doi.org/10.1242/dev.02599. Gao, M., Huang, Q., Chu, Y., Ding, C., Zhang, B., & Su, X. (2014). Analysis of the leaf methylomes of parents and their hybrids provides new insight into hybrid vigor in Populus deltoides. BMC Genetics, 15(Suppl 1), S8. https://doi.org/10.1186/1471-2156-15-S1-S8. Hardcastle, T. J. (2013). High-throughput sequencing of cytosine methylation in plant DNA. Plant Methods, 9(1), 16. https://doi.org/10.1186/1746-4811-9-16. Illingworth, R., Kerr, A., Desousa, D., Jorgensen, H., Ellis, P., Stalker, J., et al. (2008). A novel CpG island set identifies tissue-specific methylation at developmental gene loci. PLoS Biology, 6(1), e22. https://doi.org/10.1371/journal.pbio.0060022. Kass, S. U., Landsberger, N., & Wolffe, A. P. (1997). DNA methylation directs a time-dependent repression of transcription initiation. Current Biology, 7(3), 157–165. Kliebenstein, D. J., Lim, J. E., Landry, L. G., & Last, R. L. (2002). Arabidopsis UVR8 regulates ultraviolet-B signal transduction and tolerance and contains sequence similarity to human regulator of chromatin condensation 1. Plant Physiology, 130(1), 234–243. https://doi.org/10.1104/pp.005041. Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357–359. https://doi.org/10.1038/nmeth.1923. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al. (2009). The sequence alignment/map format and SAMtools. Bioinformatics, 25(16), 2078–2079. https://doi.org/10.1093/bioinformatics/btp352. Li, X., Zhu, J., Hu, F., Ge, S., Ye, M., Xiang, H., et al. (2012). Single-base resolution maps of cultivated and wild rice methylomes and regulatory roles of DNA methylation in plant gene expression. BMC Genomics, 13, 300. https://doi.org/10.1186/1471-2164-13-300. Lorincz, M. C., Dickerson, D. R., Schmitt, M., & Groudine, M. (2004). Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells. Nature Structural & Molecular Biology, 11(11), 1068–1075. https://doi.org/10.1038/nsmb840. Manoharlal, R., Saiprasad, G. V. S., Thambrahalli, A., & Madhavakrishna, K. (2018a). Dissecting the transcriptional networks underlying the gibberellin response in Nicotiana tabacum. Biologia Plantarum, 62, 647–662. Manoharlal, R., Saiprasad, G. V. S., Ullagaddi, C., & Kovařík, A. (2018b). Gibberellin A3 (GA3) as an epigenetic determinant of global DNA hypo-methylation in tobacco. Biologia Plantarum, 62, 11–23. Martienssen, R. A., & Colot, V. (2001). DNA methylation and epigenetic inheritance in plants and filamentous fungi. Science, 293(5532), 1070–1074. https://doi.org/10.1126/science.293.5532.1070. Pai, A. A., Bell, J. T., Marioni, J. C., Pritchard, J. K., & Gilad, Y. (2011). A genome-wide study of DNA methylation patterns and gene expression levels in multiple human and chimpanzee tissues. PLoS Genetics, 7(2), e1001316. https://doi.org/10.1371/journal.pgen.1001316. Parkin, I. A., Koh, C., Tang, H., Robinson, S. J., Kagale, S., Clarke, W. E., et al. (2014). Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea. Genome Biology, 15(6), R77. https://doi.org/10.1186/gb-2014-15-6-r77. Ramiro, A. R., & Barreto, V. M. (2015). Activation-induced cytidine deaminase and active cytidine demethylation. Trends in Biochemical Sciences, 40(3), 172–181. https://doi.org/10.1016/j.tibs.2015.01.006. Rountree, M. R., & Selker, E. U. (1997). DNA methylation inhibits elongation but not initiation of transcription in Neurospora crassa. Genes & Development, 11(18), 2383–2395. Schumacher, K., & Krebs, M. (2010). The V-ATPase: small cargo, large effects. Current Opinion in Plant Biology, 13(6), 724–730. https://doi.org/10.1016/j.pbi.2010.07.003. Vierstra, R. D. (2012). The expanding universe of ubiquitin and ubiquitin-like modifiers. Plant Physiology, 160(1), 2–14. https://doi.org/10.1104/pp.112.200667. Yuan, Y., Qi, L., Yu, J., Wang, X., & Huang, L. (2015). Transcriptome-wide analysis of SAMe superfamily to novelty phosphoethanolamine N-methyltransferase copy in Lonicera japonica. International Journal of Molecular Sciences, 16(1), 521–534. https://doi.org/10.3390/ijms16010521. Zemach, A., McDaniel, I. E., Silva, P., & Zilberman, D. (2010). Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science, 328(5980), 916–919. https://doi.org/10.1126/science.1186366. Zhang, M., Kimatu, J. N., Xu, K., & Liu, B. (2010). DNA cytosine methylation in plant development. J Genet Genomics, 37(1), 1–12. https://doi.org/10.1016/S1673-8527(09)60020-5. Zhang, M., Xie, S., Dong, X., Zhao, X., Zeng, B., Chen, J., et al. (2014). Genome-wide high resolution parental-specific DNA and histone methylation maps uncover patterns of imprinting regulation in maize. Genome Research, 24(1), 167–176. https://doi.org/10.1101/gr.155879.113. Zhang, X., Yazaki, J., Sundaresan, A., Cokus, S., Chan, S. W., Chen, H., et al. (2006). Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell, 126(6), 1189–1201. https://doi.org/10.1016/j.cell.2006.08.003. Zilberman, D., Gehring, M., Tran, R. K., Ballinger, T., & Henikoff, S. (2007). Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nature Genetics, 39(1), 61–69. https://doi.org/10.1038/ng1929.