Metal-Organic Framework Composites for Catalysis
Tài liệu tham khảo
Furukawa, 2013, The chemistry and applications of metal–organic frameworks, Science, 341, 974, 10.1126/science.1230444
Kitagawa, 2004, Functional porous coordination polymers, Angew. Chem. Int. Ed., 43, 2334, 10.1002/anie.200300610
Simon-Yarza, 2018, Nanoparticles of metal–organic frameworks: on the road to in vivo efficacy in biomedicine, Adv. Mater., 30, 1707365, 10.1002/adma.201707365
Zhao, 2018, Metal–organic frameworks for separation, Adv. Mater., 30, 1705189, 10.1002/adma.201705189
Lu, 2018, Nanoscale metal–organic frameworks for therapeutic, imaging, and sensing applications, Adv. Mater., 30, 1707634, 10.1002/adma.201707634
Woellner, 2018, Adsorption and detection of hazardous trace gases by metal–organic frameworks, Adv. Mater., 30, 1704679, 10.1002/adma.201704679
Wang, 2018, Sensing and capture of toxic and hazardous gases and vapors by metal–organic frameworks, Chem. Soc. Rev., 47, 4729, 10.1039/C7CS00885F
He, 2018, Porous metal–organic frameworks for fuel storage, Coord. Chem. Rev., 373, 167, 10.1016/j.ccr.2017.10.002
Farrusseng, 2009, Metal–organic frameworks: opportunities for catalysis, Angew. Chem. Int. Ed., 48, 7502, 10.1002/anie.200806063
Lee, 2009, Metal–organic framework materials as catalysts, Chem. Soc. Rev., 38, 1450, 10.1039/b807080f
Corma, 2010, Engineering metal organic frameworks for heterogeneous catalysis, Chem. Rev., 110, 4606, 10.1021/cr9003924
Yuan, 2018, Stable metal–organic frameworks: design, synthesis, and applications, Adv. Mater., 30, 1704303, 10.1002/adma.201704303
Burtch, 2018, Mechanical properties in metal–organic frameworks: emerging opportunities and challenges for device functionality and technological applications, Adv. Mater., 30, 1704124, 10.1002/adma.201704124
Jiao, 2018, Metal–organic frameworks as platforms for catalytic applications, Adv. Mater., 30, 1703663, 10.1002/adma.201703663
Xu, 2019, Functional metal–organic frameworks for catalytic applications, Coord. Chem. Rev., 388, 268, 10.1016/j.ccr.2019.03.005
Liu, 2014, Applications of metal–organic frameworks in heterogeneous supramolecular catalysis, Chem. Soc. Rev., 43, 6011, 10.1039/C4CS00094C
Li, 2016, Applications of metal–organic frameworks featuring multi-functional sites, Coord. Chem. Rev., 307, 106, 10.1016/j.ccr.2015.05.005
Huang, 2017, Multifunctional metal–organic framework catalysts: synergistic catalysis and tandem reactions, Chem. Soc. Rev., 46, 126, 10.1039/C6CS00250A
Dhakshinamoorthy, 2018, Catalysis and photocatalysis by metal organic frameworks, Chem. Soc. Rev., 47, 8134, 10.1039/C8CS00256H
Tu, 2018, Rational design of catalytic centers in crystalline frameworks, Adv. Mater., 30, 1707582, 10.1002/adma.201707582
Chughtai, 2015, Metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations, Chem. Soc. Rev., 44, 6804, 10.1039/C4CS00395K
Islamoglu, 2017, Postsynthetic tuning of metal–organic frameworks for targeted applications, Acc. Chem. Res., 50, 805, 10.1021/acs.accounts.6b00577
Wen, 2018, Pore surface engineering of metal–organic frameworks for heterogeneous catalysis, Coord. Chem. Rev., 376, 248, 10.1016/j.ccr.2018.08.012
Kang, 2019, Metal–organic frameworks with catalytic centers: from synthesis to catalytic application, Coord. Chem. Rev., 378, 262, 10.1016/j.ccr.2018.02.009
Chen, 2018, Designed fabrication of biomimetic metal–organic frameworks for catalytic applications, Coord. Chem. Rev., 378, 445, 10.1016/j.ccr.2018.01.016
Rogge, 2017, Metal–organic and covalent organic frameworks as single-site catalysts, Chem. Soc. Rev., 46, 3134, 10.1039/C7CS00033B
Zhu, 2014, Metal–organic framework composites, Chem. Soc. Rev., 43, 5468, 10.1039/C3CS60472A
Chen, 2017, Controllable design of tunable nanostructures inside metal–organic frameworks, Chem. Soc. Rev., 46, 4614, 10.1039/C6CS00537C
Juan-Alcaniz, 2012, Metal–organic frameworks as scaffolds for the encapsulation of active species: state of the art and future perspectives, J. Mater. Chem., 22, 10102, 10.1039/c2jm15563j
Liu, 2008, Metal–organic framework as a template for porous carbon synthesis, J. Am. Chem. Soc., 130, 5390, 10.1021/ja7106146
Dang, 2017, Nanomaterials derived from metal–organic frameworks, Nat. Rev. Mater., 3, 17075, 10.1038/natrevmats.2017.75
Pachfule, 2016, Fabrication of carbon nanorods and graphene nanoribbons from a metal–organic framework, Nat. Chem., 8, 718, 10.1038/nchem.2515
Shen, 2016, Development of MOF-derived carbon-based nanomaterials for efficient catalysis, ACS Catal., 6, 5887, 10.1021/acscatal.6b01222
Chaikittisilp, 2013, A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their promising applications, J. Mater. Chem. A, 1, 14, 10.1039/C2TA00278G
Ramos-Fernandez, 2011, MOFs meet monoliths: hierarchical structuring metal organic framework catalysts, Appl. Catal. A Gen., 391, 261, 10.1016/j.apcata.2010.05.019
O'Neill, 2010, Macro-/microporous MOF composite beads, J. Mater. Chem., 20, 5720, 10.1039/c0jm00515k
Bradshaw, 2012, Metal–organic framework growth at functional interfaces: thin films and composites for diverse applications, Chem. Soc. Rev., 41, 2344, 10.1039/C1CS15276A
Doherty, 2014, Using functional nano- and microparticles for the preparation of metal–organic framework composites with novel properties, Acc. Chem. Res., 47, 396, 10.1021/ar400130a
Bétard, 2012, Metal–organic framework thin films: from fundamentals to applications, Chem. Rev., 112, 1055, 10.1021/cr200167v
Yang, 2017, Metal–organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis, Chem. Soc. Rev., 46, 4774, 10.1039/C6CS00724D
Dhakshinamoorthy, 2012, Catalysis by metal nanoparticles embedded on metal–organic frameworks, Chem. Soc. Rev., 41, 5262, 10.1039/c2cs35047e
Falcaro, 2016, Application of metal and metal oxide nanoparticles@MOFs, Coord. Chem. Rev., 307, 237, 10.1016/j.ccr.2015.08.002
Meilikhov, 2010, Metals@MOFs – loading MOFs with metal nanoparticles for hybrid functions, Eur. J. Inorg. Chem., 2010, 3701, 10.1002/ejic.201000473
Li, 2018, Metal–organic frameworks encapsulating active nanoparticles as emerging composites for catalysis: recent progress and perspectives, Adv. Mater., 30, 1800702, 10.1002/adma.201800702
Chen, 2018, Encapsulation of metal nanostructures into metal–organic frameworks, Dalton Trans., 47, 3663, 10.1039/C8DT00092A
Kim, 2016, Inorganic nanoparticles in porous coordination polymers, Chem. Soc. Rev., 45, 3828, 10.1039/C5CS00940E
Hermes, 2005, Metal@MOF: loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition, Angew. Chem. Int. Ed., 44, 6237, 10.1002/anie.200462515
Chen, 2019, General immobilization of ultrafine alloyed nanoparticles within metal–organic frameworks with high loadings for advanced synergetic catalysis, ACS Cent. Sci., 5, 176, 10.1021/acscentsci.8b00805
Gu, 2011, Synergistic catalysis of metal–organic framework-immobilized Au–Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage, J. Am. Chem. Soc., 133, 11822, 10.1021/ja200122f
Chen, 2016, Seed-mediated growth of MOF-encapsulated Pd@Ag core–shell nanoparticles: toward advanced room temperature nanocatalysts, Chem. Sci., 7, 228, 10.1039/C5SC02925B
Jiang, 2011, Synergistic catalysis of Au@Ag core–shell nanoparticles stabilized on metal–organic framework, J. Am. Chem. Soc., 133, 1304, 10.1021/ja1099006
Aijaz, 2013, Metal–organic framework-immobilized polyhedral metal nanocrystals: reduction at solid-gas interface, metal segregation, core–shell structure, and high catalytic activity, J. Am. Chem. Soc., 135, 16356, 10.1021/ja4093055
Li, 2014, Hydrogen storage in Pd nanocrystals covered with a metal–organic framework, Nat. Mater., 13, 802, 10.1038/nmat4030
Chen, 2014, Metal–organic framework encapsulated Pd nanoparticles: towards advanced heterogeneous catalysts, Chem. Sci., 5, 3708, 10.1039/C4SC01847H
Zhu, 2013, Immobilizing metal nanoparticles to metal–organic frameworks with size and location control for optimizing catalytic performance, J. Am. Chem. Soc., 135, 10210, 10.1021/ja403330m
Li, 2018, Silica-protection-assisted encapsulation of Cu2O nanocubes into a metal–organic framework (ZIF-8) to provide a composite catalyst, Angew. Chem. Int. Ed., 57, 6834, 10.1002/anie.201801588
Liu, 2016, Controllable encapsulation of “clean” metal clusters within MOFs through kinetic modulation: towards advanced heterogeneous nanocatalysts, Angew. Chem. Int. Ed., 55, 5019, 10.1002/anie.201511009
Aijaz, 2014, Catalysis with metal nanoparticles immobilized within the pores of metal–organic frameworks, J. Phys. Chem. Lett., 5, 1400, 10.1021/jz5004044
Aijaz, 2012, Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal–organic framework: a double solvents approach, J. Am. Chem. Soc., 134, 13926, 10.1021/ja3043905
Lu, 2012, Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation, Nat. Chem., 4, 310, 10.1038/nchem.1272
Kuo, 2012, Yolk–shell nanocrystal@ZIF-8 nanostructures for gas-phase heterogeneous catalysis with selectivity control, J. Am. Chem. Soc., 134, 14345, 10.1021/ja306869j
Zhao, 2015, Mesoscopic constructs of ordered and oriented metal–organic frameworks on plasmonic silver nanocrystals, J. Am. Chem. Soc., 137, 2199, 10.1021/ja512951e
Wang, 2016, Nanoreactor based on macroporous single crystals of metal–organic framework, Small, 12, 5702, 10.1002/smll.201601873
He, 2013, Core–shell noble-metal@metal–organic-framework nanoparticles with highly selective sensing property, Angew. Chem. Int. Ed., 52, 3741, 10.1002/anie.201209903
Chen, 2015, One-step encapsulation of Pd nanoparticles in MOFs via a temperature control program, J. Mater. Chem. A, 3, 15259, 10.1039/C5TA02860D
Chen, 2014, One-pot synthesis of Pd@MOF composites without the addition of stabilizing agents, Chem. Commun., 50, 14752, 10.1039/C4CC06568A
Sabo, 2007, Solution infiltration of palladium into MOF-5: synthesis, physisorption and catalytic properties, J. Mater. Chem., 17, 3827, 10.1039/b706432b
Jiang, 2009, Au@ZIF-8: CO oxidation over gold nanoparticles deposited to metal–organic framework, J. Am. Chem. Soc., 131, 11302, 10.1021/ja9047653
Chen, 2015, Encapsulation of mono- or bimetal nanoparticles inside metal–organic frameworks via in situ incorporation of metal precursors, Small, 11, 2642, 10.1002/smll.201403599
Li, 2016, Controlling catalytic properties of Pd nanoclusters through their chemical environment at the atomic level using isoreticular metal–organic frameworks, ACS Catal., 6, 3461, 10.1021/acscatal.6b00397
Huang, 2016, Polydimethylsiloxane coating for a palladium/MOF composite: highly improved catalytic performance by surface hydrophobization, Angew. Chem. Int. Ed., 55, 7379, 10.1002/anie.201600497
Zhang, 2018, Site-selective catalysis of a multifunctional linear molecule: the steric hindrance of metal–organic framework channels, Adv. Mater., 30, 1800643, 10.1002/adma.201800643
Tsumori, 2018, Quasi-MOF: Exposing inorganic nodes to guest metal nanoparticles for drastically enhanced catalytic activity, Chem, 4, 845, 10.1016/j.chempr.2018.03.009
Zhao, 2014, Core–shell palladium nanoparticle@metal–organic frameworks as multifunctional catalysts for cascade reactions, J. Am. Chem. Soc., 136, 1738, 10.1021/ja411468e
Pan, 2010, Multifunctional catalysis by Pd@MIL-101: one-step synthesis of methyl isobutyl ketone over palladium nanoparticles deposited on a metal–organic framework, Chem. Commun., 46, 2280, 10.1039/b922061e
Zhao, 2016, Metal–organic frameworks as selectivity regulators for hydrogenation reactions, Nature, 539, 76, 10.1038/nature19763
Chen, 2017, Singlet oxygen-engaged selective photo-oxidation over Pt nanocrystals/porphyrinic MOF: the roles of photothermal effect and Pt electronic state, J. Am. Chem. Soc., 139, 2035, 10.1021/jacs.6b12074
Feng, 2010, Assessing the purity of metal–organic frameworks using photoluminescence: MOF-5, ZnO quantum dots, and framework decomposition, J. Am. Chem. Soc., 132, 15487, 10.1021/ja1065625
Falcaro, 2011, A new method to position and functionalize metal–organic framework crystals, Nat. Commun., 2, 237, 10.1038/ncomms1234
Esken, 2011, GaN@ZIF-8: selective formation of gallium nitride quantum dots inside a zinc methylimidazolate framework, J. Am. Chem. Soc., 133, 16370, 10.1021/ja207077u
Biswal, 2013, Stabilization of graphene quantum dots (GQDs) by encapsulation inside zeolitic imidazolate framework nanocrystals for photoluminescence tuning, Nanoscale, 5, 10556, 10.1039/c3nr03511e
Aguilera-Sigalat, 2016, Synthesis and applications of metal–organic framework–quantum dot (QD@MOF) composites, Coord. Chem. Rev., 307, 267, 10.1016/j.ccr.2015.08.004
Saha, 2014, Photocatalytic metal–organic framework from CdS quantum dot incubated luminescent metallohydrogel, J. Am. Chem. Soc., 136, 14845, 10.1021/ja509019k
Cho, 2016, Copper–organic framework fabricated with CuS nanoparticles: synthesis, electrical conductivity, and electrocatalytic activities for oxygen reduction reaction, Angew. Chem. Int. Ed., 55, 15301, 10.1002/anie.201607271
Kong, 2018, Core@shell CsPbBr3@zeolitic imidazolate framework nanocomposite for efficient photocatalytic CO2 reduction, ACS Energy Lett., 3, 2656, 10.1021/acsenergylett.8b01658
Mehta, 2018, Sol–gel synthesis of robust metal–organic frameworks for nanoparticle encapsulation, Adv. Funct. Mater., 28, 1705588, 10.1002/adfm.201705588
Ye, 2016, Immobilization of polyoxometalates in crystalline solids for highly efficient heterogeneous catalysis, Dalton Trans., 45, 10101, 10.1039/C6DT01378C
Du, 2014, Recent advances in porous polyoxometalate-based metal–organic framework materials, Chem. Soc. Rev., 43, 4615, 10.1039/C3CS60404G
An, 2006, Chiral 3D architectures with helical channels constructed from polyoxometalate clusters and copper–amino acid complexes, Angew. Chem. Int. Ed., 45, 904, 10.1002/anie.200503657
Liu, 2011, Solvothermal assembly of a series of organic–inorganic hybrid materials constructed from keggin polyoxometalate clusters and copper(I)–organic frameworks, Cryst. Growth Des., 11, 1786, 10.1021/cg1017246
Fu, 2012, An ionothermal synthetic approach to porous polyoxometalate-based metal–organic frameworks, Angew. Chem. Int. Ed., 51, 7985, 10.1002/anie.201202994
Férey, 2005, A chromium terephthalate-based solid with unusually large pore volumes and surface area, Science, 309, 2040, 10.1126/science.1116275
Sun, 2009, Highly stable crystalline catalysts based on a microporous metal–organic framework and polyoxometalates, J. Am. Chem. Soc., 131, 1883, 10.1021/ja807357r
Xu, 2015, Tuning the growth of metal–organic framework nanocrystals by using polyoxometalates as coordination modulators, Sci. China Mater., 58, 370, 10.1007/s40843-015-0053-2
Maksimchuk, 2008, Heterogeneous selective oxidation catalysts based on coordination polymer MIL-101 and transition metal-substituted polyoxometalates, J. Catal., 257, 315, 10.1016/j.jcat.2008.05.014
Mukhopadhyay, 2018, A keggin polyoxometalate shows water oxidation activity at neutral PH: POM@ZIF-8, an efficient and robust electrocatalyst, Angew. Chem. Int. Ed., 57, 1918, 10.1002/anie.201711920
Buru, 2018, Thermally induced migration of a polyoxometalate within a metal–organic framework and its catalytic effects, J. Mater. Chem. A, 6, 7389, 10.1039/C8TA02562B
Shi, 2015, Merging of the photocatalysis and copper catalysis in metal–organic frameworks for oxidative C–C bond formation, Chem. Sci., 6, 1035, 10.1039/C4SC02362E
Han, 2015, Polyoxometalate-based homochiral metal–organic frameworks for tandem asymmetric transformation of cyclic carbonates from olefins, Nat. Commun., 6, 10007, 10.1038/ncomms10007
Paille, 2018, A fully noble metal-free photosystem based on cobalt-polyoxometalates immobilized in a porphyrinic metal–organic framework for water oxidation, J. Am. Chem. Soc., 140, 3613, 10.1021/jacs.7b11788
Song, 2011, A multiunit catalyst with synergistic stability and reactivity: a polyoxometalate–metal organic framework for aerobic decontamination, J. Am. Chem. Soc., 133, 16839, 10.1021/ja203695h
Lykourinou, 2011, Immobilization of MP-11 into a mesoporous metal–organic framework, MP-11@mesoMOF: a new platform for enzymatic catalysis, J. Am. Chem. Soc., 133, 10382, 10.1021/ja2038003
Drout, 2019, Catalytic applications of enzymes encapsulated in metal–organic frameworks, Coord. Chem. Rev., 381, 151, 10.1016/j.ccr.2018.11.009
Lian, 2017, Enzyme-MOF (metal–organic framework) composites, Chem. Soc. Rev., 46, 3386, 10.1039/C7CS00058H
Doonan, 2017, Metal–organic frameworks at the biointerface: synthetic strategies and applications, Acc. Chem. Res., 50, 1423, 10.1021/acs.accounts.7b00090
Deng, 2012, Large-pore apertures in a series of metal–organic frameworks, Science, 336, 1018, 10.1126/science.1220131
Feng, 2015, Stable metal–organic frameworks containing single-molecule traps for enzyme encapsulation, Nat. Commun., 6, 5979, 10.1038/ncomms6979
Jung, 2011, Bio-functionalization of metal–organic frameworks by covalent protein conjugation, Chem. Commun., 47, 2904, 10.1039/c0cc03288c
Lyu, 2014, One-pot synthesis of protein-embedded metal–organic frameworks with enhanced biological activities, Nano Lett., 14, 5761, 10.1021/nl5026419
Liang, 2019, Enhanced activity of enzymes encapsulated in hydrophilic metal–organic frameworks, J. Am. Chem. Soc., 141, 2348, 10.1021/jacs.8b10302
Li, 2016, Toward design rules for enzyme immobilization in hierarchical mesoporous metal–organic frameworks, Chem, 1, 154, 10.1016/j.chempr.2016.05.001
Gkaniatsou, 2018, Enzyme encapsulation in mesoporous metal–organic frameworks for selective biodegradation of harmful dye molecules, Angew. Chem. Int. Ed., 57, 16141, 10.1002/anie.201811327
Li, 2018, Hierarchically engineered mesoporous metal–organic frameworks toward cell-free immobilized enzyme systems, Chem, 4, 1022, 10.1016/j.chempr.2018.03.001
Wu, 2017, Incorporation of molecular catalysts in metal–organic frameworks for highly efficient heterogeneous catalysis, Adv. Mater., 29, 1605446, 10.1002/adma.201605446
Cohen, 2012, Postsynthetic methods for the functionalization of metal–organic frameworks, Chem. Rev., 112, 970, 10.1021/cr200179u
Wang, 2013, Metal–organic frameworks as a tunable platform for designing functional molecular materials, J. Am. Chem. Soc., 135, 13222, 10.1021/ja308229p
Kajiwara, 2016, Photochemical reduction of low concentrations of CO2 in a porous coordination polymer with a ruthenium(II)–CO complex, Angew. Chem. Int. Ed., 55, 2697, 10.1002/anie.201508941
Niu, 2018, Metal–organic framework anchored with a Lewis pair as a new paradigm for catalysis, Chem, 4, 2587, 10.1016/j.chempr.2018.08.018
Bogaerts, 2013, Mn-salen@MIL101(al): a heterogeneous, enantioselective catalyst synthesized using a ‘bottle around the ship’ approach, Chem. Commun., 49, 8021, 10.1039/c3cc44473b
Kockrick, 2011, Synergistic effects of encapsulated phthalocyanine complexes in MIL-101 for the selective aerobic oxidation of tetralin, Chem. Commun., 47, 1562, 10.1039/C0CC04431H
Morabito, 2014, Molecular encapsulation beyond the aperture size limit through dissociative linker exchange in metal–organic framework crystals, J. Am. Chem. Soc., 136, 12540, 10.1021/ja5054779
Li, 2014, Metal-cation-directed de novo assembly of a functionalized guest molecule in the nanospace of a metal–organic framework, J. Am. Chem. Soc., 136, 1202, 10.1021/ja410868r
Zhang, 2012, Template-directed synthesis of nets based upon octahemioctahedral cages that encapsulate catalytically active metalloporphyrins, J. Am. Chem. Soc., 134, 928, 10.1021/ja208256u
Alkordi, 2008, Zeolite-like metal–organic frameworks as platforms for applications: on metalloporphyrin-based catalysts, J. Am. Chem. Soc., 130, 12639, 10.1021/ja804703w
Larsen, 2011, Mimicking heme enzymes in the solid state: metal–organic materials with selectively encapsulated heme, J. Am. Chem. Soc., 133, 10356, 10.1021/ja203068u
Kataoka, 2009, Photocatalytic hydrogen production from water using porous material [Ru2(p-bdc)2]n, Energy Environ. Sci., 2, 397, 10.1039/b814539c
Li, 2018, Aperture-opening encapsulation of a transition metal catalyst in a metal–organic framework for CO2 hydrogenation, J. Am. Chem. Soc., 140, 8082, 10.1021/jacs.8b04047
Li, 2016, Encapsulating a Co(II) molecular photocatalyst in metal–organic framework for visible-light-driven H2 production: Boosting catalytic efficiency via spatial charge separation, ACS Catal., 6, 5359, 10.1021/acscatal.6b01293
Grigoropoulos, 2018, Encapsulation of Crabtree's catalyst in sulfonated MIL-101(Cr): enhancement of stability and selectivity between competing reaction pathways by the MOF chemical microenvironment, Angew. Chem. Int. Ed., 57, 4532, 10.1002/anie.201710091
Uemura, 2008, Sol–gel synthesis of low-dimensional silica within coordination nanochannels, J. Am. Chem. Soc., 130, 9216, 10.1021/ja8030906
Jo, 2011, One-pot synthesis of silica@coordination polymer core–shell microspheres with controlled shell thickness, Adv. Mater., 23, 1716, 10.1002/adma.201004208
Rieter, 2007, Surface modification and functionalization of nanoscale metal–organic frameworks for controlled release and luminescence sensing, J. Am. Chem. Soc., 129, 9852, 10.1021/ja073506r
Kou, 2018, Fabrication of metal–organic frameworks inside silica nanopores with significantly enhanced hydrostability and catalytic activity, ACS Appl. Mater. Interface, 10, 12051, 10.1021/acsami.8b01652
Uemura, 2011, Incarceration of nanosized silica into porous coordination polymers: preparation, characterization, and adsorption property, Chem. Mater., 23, 1736, 10.1021/cm102610r
Cirujano, 2017, Boosting the catalytic performance of metal–organic frameworks for steroid transformations by confinement within a mesoporous scaffold, Angew. Chem. Int. Ed., 56, 13302, 10.1002/anie.201706721
Aguila, 2018, Lower activation energy for catalytic reactions through host–guest cooperation within metal–organic frameworks, Angew. Chem. Int. Ed., 57, 10107, 10.1002/anie.201803081
Zhang, 2014, A facile and general coating approach to moisture/water-resistant metal–organic frameworks with intact porosity, J. Am. Chem. Soc., 136, 16978, 10.1021/ja509960n
Sachse, 2012, In situ synthesis of Cu–BTC (HKUST-1) in macro-/mesoporous silica monoliths for continuous flow catalysis, Chem. Commun., 48, 4749, 10.1039/c2cc17190b
Kitao, 2017, Hybridization of MOFs and polymers, Chem. Soc. Rev., 46, 3108, 10.1039/C7CS00041C
Uemura, 2009, Polymerization reactions in porous coordination polymers, Chem. Soc. Rev., 38, 1228, 10.1039/b802583p
Kong, 2016, Polystyrene sulfonate threaded in MIL-101Cr(III) as stable and efficient acid catalysts, Dalton Trans., 45, 18084, 10.1039/C6DT03745C
Bromberg, 2014, Functional networks of organic and coordination polymers: catalysis of fructose conversion, Chem. Mater., 26, 6257, 10.1021/cm503098p
Dong, 2018, Heterogenization of homogeneous chiral polymers in metal–organic frameworks with enhanced catalytic performance for asymmetric catalysis, Green. Chem., 20, 4085, 10.1039/C8GC01323C
He, 2019, A generalizable method for the construction of MOF@polymer functional composites through surface-initiated atom transfer radical polymerization, Chem. Sci., 10, 1816, 10.1039/C8SC03520B
Schwab, 2008, MOF@polyhipes, Adv. Eng. Mater., 10, 1151, 10.1002/adem.200800189
Zheng, 2018, Metal–organic frameworks/graphene-based materials: preparations and applications, Adv. Funct. Mater., 28, 1804950, 10.1002/adfm.201804950
Jahan, 2012, Electrocatalytically active graphene–porphyrin MOF composite for oxygen reduction reaction, J. Am. Chem. Soc., 134, 6707, 10.1021/ja211433h
Jahan, 2013, A graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR, Adv. Funct. Mater., 23, 5363, 10.1002/adfm.201300510
Ding, 2018, Incorporation of imidazolium-based poly(ionic liquid)s into a metal–organic framework for CO2 capture and conversion, ACS Catal., 8, 3194, 10.1021/acscatal.7b03404
Qiu, 2016, Encapsulation of a metal–organic polyhedral in the pores of a metal–organic framework, J. Am. Chem. Soc., 138, 1138, 10.1021/jacs.5b12189
Fujie, 2016, Ionic liquid transported into metal–organic frameworks, Coord. Chem. Rev., 307, 382, 10.1016/j.ccr.2015.09.003
Luo, 2013, Organic electron-rich N-heterocyclic compound as a chemical bridge: building a Brönsted acidic ionic liquid confined in MIL-101 nanocages, J. Mater. Chem. A, 1, 6530, 10.1039/c3ta10975e
An, 2017, Confinement of ultrasmall Cu/ZnOx nanoparticles in metal–organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO2, J. Am. Chem. Soc., 139, 3834, 10.1021/jacs.7b00058
Guo, 2016, Self-assembly of polyoxometalates, Pt nanoparticles and metal–organic frameworks into a hybrid material for synergistic hydrogen evolution, J. Mater. Chem. A, 4, 5952, 10.1039/C6TA00011H
Lin, 2014, Enhanced photocatalytic hydrogen production activity via dual modification of MOF and reduced graphene oxide on CdS, Chem. Commun., 50, 8533, 10.1039/C4CC01776E
Yuan, 2018, Effective and selective catalysts for cinnamaldehyde hydrogenation: hydrophobic hybrids of metal–organic frameworks, metal nanoparticles, and micro- and mesoporous polymers, Angew. Chem. Int. Ed., 57, 5708, 10.1002/anie.201801289
Tian, 2018, Self-templated formation of Pt@ZIF-8/Silo2 composite with 3D-ordered macropores and size-selective catalytic properties, Small Methods, 2, 1800219, 10.1002/smtd.201800219
Shen, 2018, Ordered macro-microporous metal–organic framework single crystals, Science, 359, 206, 10.1126/science.aao3403
Xu, 2018, Heterogeneous catalysts based on mesoporous metal–organic frameworks, Coord. Chem. Rev., 373, 199, 10.1016/j.ccr.2017.10.014
Fang, 2018, Encapsulation of ultrafine metal-oxide nanoparticles within mesopores for biomass-derived catalytic applications, Chem. Sci., 9, 1854, 10.1039/C7SC04724J