Structural use of fiber-reinforced self-compacting concrete with recycled aggregates: Case study of a foundation wall in Spain
Tài liệu tham khảo
Park, 2003, Application of construction and building debris as base and subbase materials in rigid pavement, J. Transp. Eng., 129, 558, 10.1061/(ASCE)0733-947X(2003)129:5(558)
Jíménez, 2011, Estudio comparativo de los áridos reciclados de hormigón y mixtos como material para sub-bases de carreteras, Mater. Constr., 61, 289, 10.3989/mc.2010.54009
Agrela, 2012, Construction of road sections using mixed recycled aggregates treated with cement in Malaga, Spain, Resour. Conserv. Recycl., 58, 98, 10.1016/j.resconrec.2011.11.003
Herrador, 2012, Use of recycled construction and demolition waste aggregate for road course surfacing, J. Transp. Eng., 138, 182, 10.1061/(ASCE)TE.1943-5436.0000320
Ferrara, 2019, High performance fibre reinforced cementitious composites: six memos for the XXI century societal and economical challenges of civil engineering, Case Stud. Constr. Mater., 10
2021
Josa, 2021, Sustainability-oriented multi-criteria analysis of different continuous flight auger piles, Sustainability, 13, 10.3390/su13147552
Asociación Española de Gestores de Residuos de Construcción y Demolición, Guía Española de Áridos Reciclados procedentes de Residuos de Construcción y Demolición, Spain, 2012. 〈https://www.btbab.com/wp-content/uploads/documentos/legislacion/Guia_Gerd_2012.pdf〉.
IHOBE, 2011
Tegguer, 2012, Determining the water absorption of recycled aggregates utilizing hydrostatic weighing approac, Constr. Build. Mater., 27, 112, 10.1016/j.conbuildmat.2011.08.018
J. García, D. Rodríguez, A. Juan, J.M. Morán, M.I. Guerra, Pre-saturación de los áridos reciclados procedentes de residuos de construcción y demolición para la fabricación de hormigones eco-eficientes, in: Mem. VI Congr. Int. Estruct. ACHE, ACHE (Asociación Científico-Técnica del Hormigón Estructural), Madrid, 2014.
Klein, 2014, Prediction of the water absorption by aggregates over time: modelling through the use of value function and experimental validation, Constr. Build. Mater., 69, 213, 10.1016/j.conbuildmat.2014.07.048
Etxeberria, 2022, Water-washed fine and coarse recycled aggregates for real scale concretes production in Barcelona, Sustainability, 14, 10.3390/su14020708
Kathirvel, 2022, Experimental study on self compacting fibrous concrete comprising magnesium sulphate solution treated recycled aggregates, Materials, 15, 10.3390/ma15010340
Mehrabi, 2021, Effect of pumice powder and nano-clay on the strength and permeability of fiber-reinforced pervious concrete incorporating recycled concrete aggregate, Constr. Build. Mater., 287, 10.1016/j.conbuildmat.2021.122652
Toghroli, 2020, Evaluating the use of recycled concrete aggregate and pozzolanic additives in fiber-reinforced pervious concrete with industrial and recycled fibers, Constr. Build. Mater., 252, 10.1016/j.conbuildmat.2020.118997
Ali, 2018, A review on pavement porous concrete using recycled waste materials, Smart Struct. Syst., 22, 433
Xu, 2022, Effects of recycled ceramic aggregates on internal curing of high performance concrete, Constr. Build. Mater., 322, 10.1016/j.conbuildmat.2022.126484
Cachim, 2009, Mechanical properties of brick aggregate concrete, Constr. Build. Mater., 23, 1292, 10.1016/j.conbuildmat.2008.07.023
Bazaz, 2012, Properties and performance of concrete made with recycled low-quality crushed brick, J. Mater. Civ. Eng., 24, 330, 10.1061/(ASCE)MT.1943-5533.0000385
A. Rao, Experimental Investigation on Use of Recycled Aggregates in Mortar and Concrete, Thesis, Departament of Civil Engineering, Indian Institute of Technology Kampur, 2005.
Etxeberria, 2007, Recycled aggregate concrete as structural material, Mater. Struct., 40, 529, 10.1617/s11527-006-9161-5
Kou, 2009, Properties of self-compacting concrete prepared with coarse and fine recycled concrete aggregates, Cem. Concr. Compos., 31, 622, 10.1016/j.cemconcomp.2009.06.005
Gonzalez-Corominas, 2014, Properties of high performance concrete made with recycled fine ceramic and coarse mixed aggregates, Constr. Build. Mater., 68, 618, 10.1016/j.conbuildmat.2014.07.016
Rao, 2011, Influence of field recycled coarse aggregate on properties of concrete, Mater. Struct., 44, 205, 10.1617/s11527-010-9620-x
Xiao, 2005, Mechanical properties of recycled aggregate concrete under uniaxial loading, Cem. Concr. Res., 35, 1187, 10.1016/j.cemconres.2004.09.020
Kou, 2008, Mechanical properties of 5-year old concrete prepared with recycled aggregates obtained from three different sources, Mag. Concr. Res., 60, 57, 10.1680/macr.2007.00052
Li, 2004
Martínez-Lage, 2012, Properties of plain concrete made with mixed recycled coarse aggregate, Constr. Build. Mater., 37, 171, 10.1016/j.conbuildmat.2012.07.045
Pons, 2021, Sustainability-driven decision-making model: case study of fiber-reinforced concrete foundation piles, J. Constr. Eng. Manag., 147, 10.1061/(ASCE)CO.1943-7862.0002073
Santos, 2015, Experimental study about the effects of granular skeleton distribution on the mechanical properties of self-compacting concrete (SCC), Constr. Build. Mater., 78, 40, 10.1016/j.conbuildmat.2015.01.006
Alrawashdeh, 2022, Mechanical and physical characterisation of steel fibre reinforced self-compacting concrete: Different aspect ratios and volume fractions of fibres, Results Eng., 13, 10.1016/j.rineng.2022.100335
Meng, 2022, Effect of steel fiber-volume fraction and distribution on flexural behavior of Ultra-high performance fiber reinforced concrete by digital image correlation technique, Constr. Build. Mater., 320, 10.1016/j.conbuildmat.2021.126281
Akhmetov, 2022, Effect of low-modulus polypropylene fiber on physical and mechanical properties of self-compacting concrete, Case Stud. Constr. Mater., 16
De la Fuente, 2017, Sustainability based-approach to determine the concrete type and reinforcement configuration of TBM tunnel linings. Case study: extension line to Barcelona Airport T1, Tunn. Undergr. Space Technol., 61, 179, 10.1016/j.tust.2016.10.008
De la Fuente, 2019, Sustainability of column-supported RC slabs: fiber reinforcement as an alternative, J. Constr. Eng. Manag., 145, 10.1061/(ASCE)CO.1943-7862.0001667
Nguyen, 2022, Fiber reinforced concrete for slabs without steel rebar reinforcement: Assessing the feasibility for 3D-printed individual houses, Case Stud. Constr. Mater., 16
Nzambi, 2021, Empirical equations for flexural residual strengths in concrete with low volumetric fractions of hook-end steel fiber, Eng. Rep. N./a
Julian Carrillo, 2021, Indirect tensile behavior of hooked-end steel fiber- reinforced concrete under double-punch tests, Acids Mater. J., 118
Ahmad, 2021, Mechanical properties and durability assessment of nylon fiber reinforced self-compacting concrete, J. Eng. Fibers Fabr., 16
Cogurcu, 2022, Investigation of mechanical properties of red pine needle fiber reinforced self-compacting ultra high performance concrete, Case Stud. Constr. Mater., 16
Meda, 2004, Fracture behavior of SFRC slabs on grade, Mater. Struct., 37, 405, 10.1007/BF02479637
Meda, 2004, New design approach for steel fiber-reinforced concrete slabs-on-ground based on fracture mechanics, Acids Struct. J., 101
Cakir, 2022, Behavior of steel fiber reinforced concrete panels under surface pressure, Sustainability, 14
De la Fuente, 2012, Experiences in Barcelona with the use of fibres in segmental linings, Tunn. Undergr. Space Technol., 27, 60, 10.1016/j.tust.2011.07.001
De la Fuente, 2012, A new design method for steel fibre reinforced concrete pipes, Constr. Build. Mater., 30, 547, 10.1016/j.conbuildmat.2011.12.015
De la Fuente, 2011, Innovations on components and testing for precast panels to be used in reinforced earth retaining walls, Constr. Build. Mater., 25, 2198, 10.1016/j.conbuildmat.2010.11.003
Caratelli, 2011, Structural behaviour of precast tunnel segments in fiber reinforced concrete, Tunn. Undergr. Space Technol., 26, 284, 10.1016/j.tust.2010.10.003
Luca, 2006, Steel fiber concrete slabs on ground: a structural matter, Acids Struct. J., 103
Fall, 2014, Two-way slabs: experimental investigation of load redistributions in steel fibre reinforced concrete, Eng. Struct., 80, 61, 10.1016/j.engstruct.2014.08.033
F. Mora Apablaza, Distribucion y orientacion de fibras en dovelas, aplicando el ensayo barcelona, PhD Thesis, Universitat Politècnica de Catalunya (UPC), 2008. 〈https://dialnet.unirioja.es/servlet/tesis?codigo=259471〉 (accessed July 27, 2021).
Aidarov, 2021, Structural response of a fibre reinforced concrete pile-supported flat slab: full-scale test, Eng. Struct., 239, 10.1016/j.engstruct.2021.112292
Adnan, 2020, Strength behavior of reinforced concrete beam using re-cycle of PET wastes as synthetic fibers, Case Stud. Constr. Mater., 13
Gao, 2022, Shear behavior analysis and capacity prediction for the steel fiber reinforced concrete beam with recycled fine aggregate and recycled coarse aggregate, Structures, 37, 44, 10.1016/j.istruc.2021.12.075
Nassif, 2022, Assessment of punching shear strength of fiber-reinforced concrete flat slabs using factorial design of experiments, Jordan J. Civ. Eng., 16, 2022
Kachouh, 2022, Shear response of recycled aggregates concrete deep beams containing steel fibers and web openings, Sustainability, 14, 10.3390/su14020945
Ortiz, 2017, Steel-fibre-reinforced self-compacting concrete with 100% recycled mixed aggregates suitable for structural applications, Constr. Build. Mater., 156, 230, 10.1016/j.conbuildmat.2017.08.188
B. Chiaia, A.P. Fantilli, P. Vallini, Minimum reinforcement and fiber contribution in tunnel linings: the Italian experience, in: Proc. Fourth Int. Struct. Eng. Constr. Conf., Taylor & Francis Group, Melbourne, 2007: pp. 365–370. https://doi.org/porto.polito.it/id/eprint/1660903.
Fantilli, 2016, Unified approach for minimum reinforcement of concrete beams, Acids Struct. J., 113, 1107
Orbe, 2012, Framework for the design and analysis of steel fiber reinforced self-compacting concrete structures, Constr. Build. Mater., 35, 676, 10.1016/j.conbuildmat.2012.04.135
A. Orbe Mateo, Optimización del Uso de Hormigones Autocompactantes Reforzados con Fibras de Acero en Aplicaciones Convencionales de Resistencias Moderadas, PhD Thesis, Universidad del País Vasco, 2013. 〈https://addi.ehu.es/handle/10810/11156〉 (accessed August 2, 2021).
UNE-EN 12390–3:2020, Testing hardened concrete - Part 3: Compressive strength of test specimens, 2020. 〈https://www.normadoc.com/english/une-en-12390–3-2020.html〉 (accessed August 2, 2021).
UNE-EN 12390–13:2014, Testing hardened concrete - Part 13: Determination of secant modulus of elasticity in compression, 2014. 〈https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma/?c=N0053157〉 (accessed August 2, 2021).
Cavalaro, 2016, Assessment of fibre content and 3D profile in cylindrical SFRC specimens, Mater. Struct., 49, 577, 10.1617/s11527-014-0521-2
BSI, BS EN 14651:2005+A1:2007 - Test method for metallic fibre concrete. Measuring the flexural tensile strength (limit of proportionality (LOP), residual) (British Standard), BSI: British Standards Institution, 2007. 〈https://standards.globalspec.com/std/1086710/BS%20EN%2014651〉 (accessed September 2, 2020).
Torrents, 2012, Inductive method for assessing the amount and orientation of steel fibers in concrete, Mater. Struct., 45, 1577, 10.1617/s11527-012-9858-6
The International Federation for Structural Concrete (fib), The fib Model Code for Concrete Structures 2010, Wiley-VCH Verlag GmbH & Co., KGaA, Weinheim, German, 2013. https://doi.org/10.1002/9783433604090.
A. Blanco Alvarez, Characterization and modelling of SFRC elements, PhD Thesis, Universitat Politècnica de Catalunya (UPC), 2013. 〈https://dialnet.unirioja.es/servlet/tesis?codigo=97127〉 (Accessed July 27, 2021).
Blanco, 2015, Assessment of the fibre orientation factor in SFRC slabs, Compos. Part B Eng., 68, 343, 10.1016/j.compositesb.2014.09.001
Khan, 2022, Investigation on fracture behavior of cementitious composites reinforced with aligned hooked-end steel fibers, Materials, 15