Preparation and characterization of CuFe2O4 bulk catalysts

Ceramics International - Tập 37 - Trang 803-812 - 2011
Julia E. Tasca1, Claudia E. Quincoces2, Araceli Lavat1, Ana M. Alvarez2, M. Gloria González2
1Fac Ing. (UNCPBA), Av del Valle 5737, B7400JWI Olavarría, Argentina
2Centro de investigación Desarrollo en Ciencias Aplicadas Dr. J.J. Ronco (CINDECA) (CONICET-UNLP), 47 Nro 257, 1900 La Plata, Argentina

Tài liệu tham khảo

Choudhary, 2002, Catalysts for combustion of methane and lower alkanes, Appl. Catal. A, 234, 1, 10.1016/S0926-860X(02)00231-4 Kameoka, 2005, Spinel CuFe2O4: a precursor for copper catalyst with high thermal stability and activity, Catal. Lett., 100, 89, 10.1007/s10562-004-3091-z Alifanti, 2005, Supported Co-based perovskites as catalysts for total oxidation of methane, Appl. Catal. A, 280, 255, 10.1016/j.apcata.2004.11.005 Teraoka, 1996, Simultaneous catalytic removal of nitrogen oxides and diesel soot particulate over perovskite-related oxides, Catal. Today, 27, 107, 10.1016/0920-5861(95)00177-8 Kircherova, 2002, Evidence of phase cooperation in the LaCoO3–CeO2–Co3O4 catalytic system in relation to activity in methane combustion, Appl. Catal., 231, 65, 10.1016/S0926-860X(01)00903-6 Huang, 2006, Synthesis of MgFe2O4 nanocrystallites under mild conditions, Mater. Chem. Phys., 97, 394, 10.1016/j.matchemphys.2005.08.035 Arnone, 1998, Catalytic combustion of methane over transition metal oxides, Stud. Surf. Sci. Catal., 119, 65, 10.1016/S0167-2991(98)80409-6 Liu, 2009, Dry citrate-precursor synthesized nanocrystalline cobalt oxide as highly active catalyst for total oxidation of propane, J. Catal., 263, 104, 10.1016/j.jcat.2009.01.018 Pantaleo, 2009, Support effect on the structure and CO oxidation activity of Cu–Cr mixed oxides over Al2O3 and SiO2, Mater. Chem. Phys., 114, 604, 10.1016/j.matchemphys.2008.10.006 Liu, 2008, Preparation of nanometer CuFe2O4 by auto-combustion and its catalytic activity on the thermal decomposition of ammonium perchlorate, Mater. Lett., 62, 4056, 10.1016/j.matlet.2008.04.081 A.F. Wells, Química Inorgánica Estructural, Ed. Reverté, Barcelona, 1978 (Chapter 12). Gallezot, 1994, p. 537 Ristić, 2000, Ferritization of copper ions in the Cu–Fe–O system, Mater. Sci. Eng., B77, 73, 10.1016/S0921-5107(00)00474-8 Tang, 1989, Copper ferrite revisited, J. Solid State Chem., 79, 250, 10.1016/0022-4596(89)90272-7 Goya, 1998, Structural and magnetic properties of ball milled copper ferrite, J. Appl. Phys., 84, 1101, 10.1063/1.368109 Kalai Selvan, 2003, Combustion synthesis of CuFe2O4, Mater. Res. Bull., 38, 41, 10.1016/S0025-5408(02)01004-8 George, 2006, Finite size effects on the structural and magnetic properties of sol–gel synthesized NiFe2O4 powders, J. Magn. Magn. Mater., 302, 190, 10.1016/j.jmmm.2005.08.029 Lin-Vien, 1991 Yue, 2004, J. Magn. Magn. Mater., 270, 216, 10.1016/j.jmmm.2003.08.025 Barroso, 2006, J. Phys. Chem. Solids, 67, 1583, 10.1016/j.jpcs.2006.01.114 Kalai Selvan, 2005, Mössbauer and D.C. magnetization studies of (CuFe2O4)1−x(SnO2)x (x=0 and 5wt%) nanocomposites, Hyperf. Inter., 165, 231, 10.1007/s10751-006-9271-z Liu, 2008, Hydrothermal synthesis of CoFe2O4 nanoplatelets and nanoparticles, Mat. Chem. Phys., 108, 269, 10.1016/j.matchemphys.2007.09.035 Faungnawakij, 2008, Catalytic hydrogen production from dimethyl ether over CuFe2O4 spinel-based composites: hydrogen reduction and metal dopant effects, Catal. Today, 138, 157, 10.1016/j.cattod.2008.05.004 Curtis Conner, 1986, Spillover of sorbed species, Adv. Catal., 34, 1