Emergence of Apparent Horizon in Gravitational Collapse
Tóm tắt
We solve Einstein vacuum equations in a spacetime region up to the “center” of gravitational collapse. Within this region, we construct a sequence of marginally outer trapped surfaces (MOTS) with areas going to zero. These MOTS form a marginally outer trapped tube (apparent horizon). It emerges from a point and is smooth (except at that point). In the proof we employ a scale critical trapped surface formation criterion established by An and Luk and a new type of quasilinear elliptic equation is studied. One of the main conclusions in this paper proves a conjecture of Ashtekar on black hole thermodynamics. And the spacetimes constructed here could also be viewed as (non-spherically symmetric) generalizations of the well-known Vaidya spacetime.
Tài liệu tham khảo
Alexakis, S.: The Penrose inequality on perturbations of the Schwarzschild exterior, preprint (2015), arXiv:1506.06400
An, X.: Formation of trapped surfaces from past null infinity, preprint (2012), arXiv:1207.5271
An, X., Luk, J.: Trapped surfaces in vacuum arising dynamically from mild incoming radiation. Adv. Theor. Math. Phys. 21(1), 1–120 (2017)
Andersson, L., Eichmair, M., Metzger, J.: Jang’s equation and its applications to marginally trapped surfaces, arXiv: 1006.4601, (2010)
Andersson, L., Mars, M., Simon, W.: Local existence of dynamical and trapping horizons. Phys. Rev. Lett. 95, 111102 (2005)
Andersson, L., Metzger, J.: The area of horizons and the trapped region. Comm. Math. Phys. 290(3), 941–972 (2009)
Ashtekar, A., Galloway, G.: Some uniqueness results for dynamical horizons. Adv. Theor. Math. Phys. 9(1), 1–30 (2005)
Ashtekar, A., Krishnan, B.: Dynamical horizons and their properties. Phys. Rev. 104030(10), 25 (2003)
Ashtekar, A., Krishnan, B.: Isolated and dynamical horizons and their applications. Living Rev. Relativity 7, 10 (2004)
Aubin, T.: Nonlinear analysis on manifolds. Monge-Ampère equations, Grundlehren der mathematischen Wissenschaften, vol. 252 (1982)
Christodoulou, D.: The formation of black holes and singularities in spherically symmetric gravitational collapse. Comm. Pure Appl. Math. 44(3), 339–373 (1991)
Christodoulou, D.: Bounded variation solutions of the spherically symmetric Einstein-scalar field equations. Comm. Pure Appl. Math. 46(8), 1131–1220 (1993)
Christodoulou, D.: Examples of naked singularity formation in the gravitational collapse of a scalar field. Ann. Math. (2) 140(3), 607–653 (1994)
Christodoulou, D.: The instability of naked singularities in the gravitational collapse of a scalar field. Ann. Math. (2) 149(1), 183–217 (1999)
Christodoulou, D.: The formation of black holes in general relativity. Monographs in Mathematics, European Mathematical Soc (2009)
Christodoulou, D., Klainerman, S.: The global nonlinear stability of the Minkowski space. Princeton mathematical series, vol. 41, (1993)
Dafermos, M.: The formation of black holes in general relativity. Astérisque 352, 2 (2013)
Dafermos, M., Holzegel, G., Rodnianski, I.: A scattering theory construction of dynamical vacuum black holes, preprint (2013), arXiv:1306.5364
Evans, L.: Partial differential equations. AMS Grad Stud Math 19, 205 (1998)
Eichmair, M.: The plateau problem for marginally trapped surfaces. J. Diff. Geom. 83(3), 551–584 (2009)
Eichmair, M.: Existence, regularity, and properties of generalized apparent horizons. Comm. Math. Phys. 294(3), 745–760 (2010)
Galloway, G., Schoen, R.: A generalization of Hawking’s black hole topology theorem to higher dimensions. Comm. Math. Phys. 266, 571–576 (2006)
Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order, vol. 224. Springer, Berlin (1983)
Holzegel, G.: Ultimately Schwarzschildean spacetimes and the black hole stability problem, preprint (2010), arXiv:1010.3216
Klainerman, S., Nicolo, F.: The evolution problem in general relativity. Progress in mathematical physics. Birkhaüser, Basel (2003)
Klainerman, S., Luk, J., Rodnianski, I.: A fully anisotropic mechanism for formation of trapped surfaces in vacuum. Invent. Math. 198, 1 (2014)
Klainerman, S., Rodnianski, I.: On emerging scarred surfaces for the Einstein vacuum equations. Discrete Contin. Dyn. Syst. 28(3), 1007–1031 (2010)
Klainerman, S., Rodnianski, I.: On the the formation of trapped surfaces. Acta Math. 208(2), 211–333 (2012)
Le, P.: The intersection of a hyperplane with a lightcone in the Minkowski spcetime, arXiv: 1601.01567, preprint (2016)
Li, J., Yu, P.: Construction of Cauchy data of vacuum Einstein field equations evolving to black holes. Ann. Math. 181, 169 (2014)
Liang, C., Zhou, B.: Introductory differential geometry and general relativity I, II, III. Science Press China, Beijing (2000)
Luk, J.: On the local existence for the characteristic initial value problem in general relativity. Int. Mat. Res. Notices 20, 4625–4678 (2012)
Luk, J.: Weak null singularities in general relativity, preprint (2013), arXiv:1311.4970
Luk, J., Rodnianski, I.: Local propagation of impulsive gravitational waves, preprint (2012), arXiv:1209.1130
Luk, J., Rodnianski, I.: Nonlinear interactions of impulsive gravitational waves for the vacuum Einstein equations, preprint (2013), arXiv:1301.1072
Metzger, J.: Blowup of Jang’s equation at outermost marginally trapped surfaces. Comm. Math. Phys. 294, 61–72 (2010)
Penrose, R.: Gravitational collapse and space-time singularities. Phys. Rev. Lett. 14, 57–59 (1965)
Petersen, P.: Riemannian Geometry. Graduate Texts in Mathematics series 171, (2006)
Reiterer, M., Trubowitz, E.: Strongly focused gravitational waves Comm. Math. Phys. 307(2), 275–313 (2011)
Schoen, R.: Talk given at the Miami Waves conference, (2004)
Schoen, R., Yau, S.T.: The existence of a black hole due to condensation of matter. Commun. Math. Phys. 90(4), 575–579 (1983)
Williams, C.: Asymptotic behavior of spherically symmetric marginally trapped tubes. Ann. Henri Poincaré 9(6), 1029–1067 (2008)
Yau, S.T.: Geometry of three manifolds and existence of black hole due to boundary effect. Adv. Theor. Math. Phys. 5(4), 755–767 (2001)
Yu, P.: Energy estimates and gravitational collapse. Comm. Math. Phys. 317(2), 273–316 (2013)
Yu, P.: Dynamical Formation of black holes due to the condensation of matter field, preprint (2011), arXiv:1105.5898