Electrochemical performance of Ti3C2Tx MXene in aqueous media: towards ultrasensitive H2O2 sensing

Electrochimica Acta - Tập 235 - Trang 471-479 - 2017
Lenka Lorencova1, Tomas Bertok1, Erika Dosekova1, Alena Holazova1, Darina Paprckova1, Alica Vikartovska1, Vlasta Sasinkova1, Jaroslav Filip2, Peter Kasak2, Monika Jerigova3,4, Dusan Velic3,4, Khaled A. Mahmoud5, Jan Tkac1
1Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic
2Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
3Department of Physical Chemistry, Faculty of Natural Sciences, Comenius University, Mlynska Dolina, Bratislava, 84215, Slovak Republic
4International Laser Centre, Ilkovičova 3, Bratislava 84104, Slovak Republic
5Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), P.O. Box 5825, Doha, Qatar

Tài liệu tham khảo

Kagan, 2016, Nano Day: Celebrating the Next Decade of Nanoscience and Nanotechnology, ACS Nano, 10, 9093, 10.1021/acsnano.6b06655 Wee, 2016, An Update from Flatland, ACS Nano, 10, 8121, 10.1021/acsnano.6b06087 Mendoza-Sánchez, 2016, Synthesis of Two-Dimensional Materials for Capacitive Energy Storage, Adv. Mater., 28, 6104, 10.1002/adma.201506133 Shahzad, 2016, Electromagnetic interference shielding with 2D transition metal carbides (MXenes), Science, 353, 1137, 10.1126/science.aag2421 Novoselov, 2004, Electric Field Effect in Atomically Thin Carbon Films, Science, 306, 666, 10.1126/science.1102896 Pakdel, 2014, Nano boron nitride flatland, Chem. Soc. Rev., 43, 934, 10.1039/C3CS60260E Sorkin, 2014, Nanoscale Transition Metal Dichalcogenides: Structures, Properties, and Applications, Crit. Rev. Solid State Mater. Sci., 39, 319, 10.1080/10408436.2013.863176 Halim, 2016, X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes), Appl. Surf. Sci., 362, 406, 10.1016/j.apsusc.2015.11.089 Miller, 2014, Nanoscale metal oxide-based heterojunctions for gas sensing: A review, Sens. Actuat. B: Chem., 204, 250, 10.1016/j.snb.2014.07.074 Zhang, 2015, Nanostructured Mn-based oxides for electrochemical energy storage and conversion, Chem. Soc. Rev., 44, 699, 10.1039/C4CS00218K Naguib, 2011, Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2, Adv. Mater., 23, 4248, 10.1002/adma.201102306 Anasori, 2015, Two-Dimensional, Ordered: Double Transition Metals Carbides (MXenes), ACS Nano, 9, 9507, 10.1021/acsnano.5b03591 Xie, 2016, Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices, Nano Energy, 26, 513, 10.1016/j.nanoen.2016.06.005 Sang, 2016, Atomic Defects in Monolayer Titanium Carbide (Ti3C2Tx) MXene, ACS Nano, 10, 9193, 10.1021/acsnano.6b05240 Wang, 2016, Fabrication and thermal stability of two-dimensional carbide Ti3C2 nanosheets, Ceram. Int., 42, 8419, 10.1016/j.ceramint.2016.02.059 Naguib, 2015, Synthesis of Two-Dimensional Materials by Selective Extraction, Acc. Chem. Res., 48, 128, 10.1021/ar500346b Naguib, 2012, Two-Dimensional Transition Metal Carbides, ACS Nano, 6, 1322, 10.1021/nn204153h Wang, 2015, Enhancement of the electrical properties of MXene Ti3C2 nanosheets by post-treatments of alkalization and calcination, Mater. Lett., 160, 537, 10.1016/j.matlet.2015.08.046 Xie, 2014, Prediction and Characterization of MXene Nanosheet Anodes for Non-Lithium-Ion Batteries, ACS Nano, 8, 9606, 10.1021/nn503921j Er, 2014, Ti3C2 MXene as a High Capacity Electrode Material for Metal (Li, Na, K, Ca) Ion Batteries, ACS Appl. Mater. Interf., 6, 11173, 10.1021/am501144q Liang, 2015, Sulfur Cathodes Based on Conductive MXene Nanosheets for High-Performance Lithium–Sulfur Batteries, Angew. Chem. Int. Ed., 54, 3907, 10.1002/anie.201410174 Ahmed, 2016, H2O2 assisted room temperature oxidation of Ti2C MXene for Li-ion battery anodes, Nanoscale, 8, 7580, 10.1039/C6NR00002A Ghidiu, 2016, Ion-Exchange and Cation Solvation Reactions in Ti3C2 MXene, Chem. Mater., 28, 3507, 10.1021/acs.chemmater.6b01275 Byeon, 2016, Two-Dimensional Titanium Carbide MXene As a Cathode Material for Hybrid Magnesium/Lithium-Ion Batteries, ACS Appl. Mater. Interf. Xu, 2016, Charging/Discharging Dynamics in Two-Dimensional Titanium Carbide (MXene) Slit Nanopore: Insights from molecular dynamic study, Electrochim. Acta, 196, 75, 10.1016/j.electacta.2016.02.165 Rakhi, 2015, Effect of Postetch Annealing Gas Composition on the Structural and Electrochemical Properties of Ti2CTx MXene Electrodes for Supercapacitor Applications, Chem. Mater., 27, 5314, 10.1021/acs.chemmater.5b01623 Ji, 2016, Probing the electrochemical capacitance of MXene nanosheets for high-performance pseudocapacitors, Phys. Chem. Chem. Phys., 18, 4460, 10.1039/C5CP07311A Wang, 2015, Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors, Nat. Commun., 6, 6544, 10.1038/ncomms7544 Peng, 2014, Unique Lead Adsorption Behavior of Activated Hydroxyl Group in Two-Dimensional Titanium Carbide, J. Am. Chem. Soc., 136, 4113, 10.1021/ja500506k Rasool, 2016, Antibacterial Activity of Ti3C2Tx MXene, ACS Nano, 10, 3674, 10.1021/acsnano.6b00181 Mashtalir, 2014, Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media, J. Mater. Chem. A, 2, 14334, 10.1039/C4TA02638A Wang, 2015, An Organ-Like Titanium Carbide Material (MXene) with Multilayer Structure Encapsulating Hemoglobin for a Mediator-Free Biosensor, J. Electrochem. Soc., 162, B16, 10.1149/2.0371501jes Wang, 2015, TiO2 nanoparticle modified organ-like Ti3C2 MXene nanocomposite encapsulating hemoglobin for a mediator-free biosensor with excellent performances, Biosens. Bioelectron., 74, 1022, 10.1016/j.bios.2015.08.004 Liu, 2015, A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2, Sens. Actuat. B: Chem., 218, 60, 10.1016/j.snb.2015.04.090 Rakhi, 2016, Novel amperometric glucose biosensor based on MXene nanocomposite, Sci. Rep., 6, 36422, 10.1038/srep36422 Yu, 2015, Monolayer Ti2CO2: A Promising Candidate for NH3 Sensor or Capturer with High Sensitivity and Selectivity, ACS Appl. Mater. Interf., 7, 13707, 10.1021/acsami.5b03737 Xu, 2016, Ultrathin MXene-Micropattern-Based Field-Effect Transistor for Probing Neural Activity, Adv. Mater., 28, 3333, 10.1002/adma.201504657 Chen, 2014, Advances in enzyme-free electrochemical sensors for hydrogen peroxide, glucose, and uric acid, Microchim. Acta, 181, 689, 10.1007/s00604-013-1098-0 Liu, 2013, Hydrophobic ionic liquid immoblizing cholesterol oxidase on the electrodeposited Prussian blue on glassy carbon electrode for detection of cholesterol, Electrochim. Acta, 90, 203, 10.1016/j.electacta.2012.11.119 Turkmen, 2014, Glucose biosensor based on immobilization of glucose oxidase in electropolymerized poly(o-phenylenediamine) film on platinum nanoparticles-polyvinylferrocenium modified electrode, Electrochim. Acta, 123, 93, 10.1016/j.electacta.2013.12.189 Zhou, 2012, Direct electrochemistry of sarcosine oxidase on graphene: chitosan and silver nanoparticles modified glassy carbon electrode and its biosensing for hydrogen peroxide, Electrochim. Acta, 71, 294, 10.1016/j.electacta.2012.04.014 Tkac, 2007, The use of single walled carbon nanotubes dispersed in a chitosan matrix for preparation of a galactose biosensor, Biosens. Bioelectron., 22, 1820, 10.1016/j.bios.2006.08.014 Zhao, 2015, Flexible MXene/Carbon Nanotube Composite Paper with High Volumetric Capacitance, Adv. Mater. (Weinheim, Ger.), 27, 339, 10.1002/adma.201404140 Škantárová, 2013, Functional silver nanostructured surfaces applied in SERS and SIMS, Surf. Interface Anal., 45, 1266, 10.1002/sia.5267 Naguib, 2014, One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes, Chem. Commun., 50, 7420, 10.1039/C4CC01646G Hu, 2015, Vibrational properties of Ti3C2 and Ti3C2T2 (T=O, F: OH) monosheets by first-principles calculations: a comparative study, Phys. Chem. Chem. Phys., 17, 9997, 10.1039/C4CP05666C Lipatov, 2016, Effect of Synthesis on Quality, Electronic Properties and Environmental Stability of Individual Monolayer Ti3C2 MXene Flakes, Advanced Electronic Materials, 2 Miranda, 2017, Rendering Ti3C2T x (MXene) monolayers visible, Materials Research Letters, 1 Ren, 2016, Porous Two-Dimensional Transition Metal Carbide (MXene) Flakes for High-Performance Li-Ion Storage, ChemElectroChem, 3, 689, 10.1002/celc.201600059 Ling, 2014, Flexible and conductive MXene films and nanocomposites with high capacitance, Proceedings of the National Academy of Sciences, 111, 16676, 10.1073/pnas.1414215111 Ali, 2016, Transparent and conductive Ti3C2Tx (MXene) thin film fabrication by electrohydrodynamic atomization technique, Journal of Materials Science: Materials in Electronics, 27, 5440 Lukatskaya, 2013, Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide, Science, 341, 1502, 10.1126/science.1241488 Huang, 2012, Nanostructure Transition on Anodic Titanium: Structure Control via a Competition Strategy between Electrochemical Oxidation and Chemical Etching, J. Phys. Chem. C, 116, 22359, 10.1021/jp305922c Ghassemi, 2014, In situ environmental transmission electron microscopy study of oxidation of two-dimensional Ti3C2 and formation of carbon-supported TiO2, J. Mater. Chem. A, 2, 14339, 10.1039/C4TA02583K Zhou, 2009, Electrochemical Sensing and Biosensing Platform Based on Chemically Reduced Graphene Oxide, Anal. Chem., 81, 5603, 10.1021/ac900136z Randviir, 2014, The Oxygen Reduction Reaction at Graphene Modified Electrodes, Electroanalysis, 26, 76, 10.1002/elan.201300477 Qu, 2010, Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells, ACS Nano, 4, 1321, 10.1021/nn901850u Zhang, 2016, N-doped graphene coupled with Co nanoparticles as an efficient electrocatalyst for oxygen reduction in alkaline media, J. Power Sources, 302, 114, 10.1016/j.jpowsour.2015.10.055 Vij, 2016, Covalent versus Charge Transfer Modification of Graphene/Carbon-Nanotubes with Vitamin B1: Co/N/S-C Catalyst toward Excellent Oxygen Reduction, ACS Appl. Mater. Interf., 8, 16045, 10.1021/acsami.6b03546 Tkac, 2006, Dispersion of single walled carbon nanotubes. Comparison of different dispersing strategies for preparation of modified electrodes toward hydrogen peroxide detection, Electrochem. Commun., 8, 899, 10.1016/j.elecom.2006.03.028 Yeh, 2015, Facile Synthesis of Boron-doped Graphene Nanosheets with Hierarchical Microstructure at Atmosphere Pressure for Metal-free Electrochemical Detection of Hydrogen Peroxide, Electrochim. Acta, 172, 52, 10.1016/j.electacta.2015.01.210 Xu, 2016, Direct growth of MnOOH nanorod arrays on a carbon cloth for high-performance non-enzymatic hydrogen peroxide sensing, Anal. Chim. Acta, 913, 128, 10.1016/j.aca.2016.01.055 Pan, 2015, Hierarchical architecture of nanographene-coated rice-like manganese dioxide nanorods/graphene for enhanced electrocatalytic activity toward hydrogen peroxide reduction, Mater. Sci. Semicond. Process., 40, 176, 10.1016/j.mssp.2015.07.001 Chen, 2012, Recent advances in electrochemical sensing for hydrogen peroxide: a review, Analyst, 137, 49, 10.1039/C1AN15738H Karyakin, 2004, Prussian blue based nanoelectrode arrays for H2O2 detection, Anal. Chem., 76, 474, 10.1021/ac034859l Han, 2013, Prussian blue @ platinum nanoparticles/graphite felt nanocomposite electrodes: Application as hydrogen peroxide sensor, Biosens. Bioelectron., 43, 120, 10.1016/j.bios.2012.12.003 Xiao, 2009, Ultrasonic Electrodeposition of Gold-Platinum Alloy Nanoparticles on Ionic Liquid-Chitosan Composite Film and Their Application in Fabricating Nonenzyme Hydrogen Peroxide Sensors, J. Phys. Chem. C, 113, 849, 10.1021/jp808162g Chen, 2012, 3D porous and redox-active Prussian blue-in-graphene aerogels for highly efficient electrochemical detection of H2O2, J. Mater. Chem., 22, 22090, 10.1039/c2jm34541b