Công nghệ mới trong phục hồi môi trường: hạn chế và cơ hội

Biodegradation - Tập 23 - Trang 917-926 - 2012
Smriti Rayu1, Dimitrios G. Karpouzas2, Brajesh K. Singh1
1Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, Australia
2Department of Biochemistry and Biotechnology, University of Thessaly, Larisa, Greece

Tóm tắt

Công nghiệp hóa mạnh mẽ, việc xử lý không đầy đủ, các hoạt động sản xuất quy mô lớn và rò rỉ hợp chất hữu cơ đã dẫn đến nguồn ô nhiễm kéo dài kéo dài trong đất và nước ngầm. Đây là một vấn đề môi trường, chính sách và sức khỏe chính do ảnh hưởng tiêu cực của các chất ô nhiễm đối với con người và hệ sinh thái. Các công nghệ hiện tại cho việc phục hồi các khu vực ô nhiễm bao gồm phục hồi hóa học và vật lý, thiêu đốt và phục hồi sinh học. Với sự tiến bộ gần đây, phục hồi sinh học mang lại một lựa chọn thân thiện với môi trường, khả thi về mặt kinh tế và được xã hội chấp nhận để loại bỏ các chất ô nhiễm khỏi môi trường. Ba cách tiếp cận chính của phục hồi sinh học bao gồm sử dụng vi khuẩn, thực vật và phục hồi enzym. Cả ba cách tiếp cận này đều đã được sử dụng với một số thành công nhưng bị hạn chế bởi nhiều yếu tố gây cản trở khác nhau. Trong bài báo này, chúng tôi cung cấp cái nhìn tổng quan ngắn gọn về các cách tiếp cận, những hạn chế của chúng và nêu bật các công nghệ mới nổi có tiềm năng cách mạng hóa các phương pháp phục hồi enzym và thực vật.

Từ khóa

#bioremediation #environmental contamination #microbial remediation #enzymatic remediation #phytoremediation

Tài liệu tham khảo

Abhilash PC, Singh HB, Powell JR, Singh BK (2012) Plant–microbe interactions: novel applications for exploitation in multi-purpose remediation technologies. Trend Biotechnol 30:416–420 Beil S, Mason JR, Timmis KN, Pieper DH (1998) Identification of chlorobenzene dioxygenase sequence elements involved in dechlorination of 1,2,4,5-tetrachlorobenzene. J Bacteriol 180:5520–5528 Black H (1995) Absorbing possibilities: phytoremediation. Environ Health Perspect 103:1106 Blasco R, Wittich RM, Megharaj M, Timmis KN, Pieper DH (1995) From xenobiotic to antibiotic: formation of protoanemonin from 4-chlorocatechol by enzymes of the 3-oxoadipate pathway. J Biol Chem 270:29229–29235 Brar SK, Verma M, Surampalli RY, Misra K, Tyagi RD, Meunier N, Blais JF (2006) Bioremediation of hazardous wastes—a review. Pract Period Hazard Toxic Radioact Waste Manag 10:59 Chaudhry T, Hayes W, Khan A, Khoo C (1998) Phytoremediation—focusing on accumulator plants that remediate metal-contaminated soils. Australas J Ecotoxicol 4:37–51 Cluis C (2004) Junk-greedy greens: phytoremediation as a new option for soil decontamination. BioTeach J 2:61–67 Curtis TP, Sloan WT, Scannell JW (2002) Estimating prokaryotic diversity and its limits. Proc Nat Acad Sci USA 99:10494–10497 Erb RW, Eichner CA, Wagner-Döbler I, Timmis KN (1997) Bioprotection of microbial communities from toxic phenol mixtures by a genetically designed pseudomonad. Nat Biotechnol 15:378–382 Fan X, Liu X, Huang R, Liu Y (2012) Identification and characterization of a novel thermostable pyrethroid-hydrolyzing enzyme isolated through metagenomic approach. Microb Cell Fact 11:33–37 Gerhardt KE, Huang X-D, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176:20–30 Ginolhac A, Jarrin C, Gillet B, Robe P, Pujic P, Tuphile K, Bertrand H, Vogel TM, Perrière G, Simonet P, Nalin R (2004) Phylogenetic analysis of polyketide synthase I domains from soil metagenomic libraries allows selection of promising clones. Appl Environ Microbiol 70:5522–5527 Gulmaraes BCM, Arends JBA, Van der Ha D, Boon N, Verstraetes W (2010) Microbial service and their management: recent progress in soil bioremediation technologies. Appl Soil Ecol 46:157–167 Guo HH, Choe J, Loeb LA (2004) Protein tolerance to random amino acid change. Proc Natl Acad Sci USA 101:9205 Hadacek F (2002) Secondary metabolites as plant traits: current assessment and future perspectives. Crit Rev Plant Sci 21:273–322 Hartman Jr WJ (1975) An evaluation of land treatment of municipal wastewater and physical siting of facility installations. DTIC Document Hatzinger PB, Whittier MC, Arkins MD, Bryan CW, Guarini WJ (2002) In situ and ex-situ bioremediation options for treating perchlorate in groundwater. Remediat J 12:69–86 Hazen TC, Dubinsky EA, DeSantis TZ et al (2010) Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330:204–208 Holloway P, Knoke KL, Trevors JT, Lee H (1998) Alteration of the substrate range of haloalkane dehalogenase by site directed mutagenesis. Biotechnol Bioeng 59:520–523 Jones KC, de Voogt P (1999) Persistent organic pollutants (POPs): state of the science. Environ Pollut 100:209–222 Ju KS, Parales RE (2006) Control of substrate specificity by active-site residues in nitrobenzene dioxygenase. Appl Environ Microbiol 72:1817–1824 Juwarkar A, Singh S, Mudhoo A (2010) A comprehensive overview of elements in bioremediation. Rev Environ Sci Biotechnol 9:215–288 Karns JS, Hapeman CJ, Mulbry WW, Ahrens EH, Shelton DR (1998) Biotechnology for the elimination of agrochemical wastes. HortScience 33:626–631 Kind S, Jeong WK, Schröder H, Zelder O, Wittmann C (2010) Identification and elimination of the competing N-acetyldiaminopentane pathway for improved production of diaminopentane by Corynebacterium glutamicum. Appl Environ Microbiol 76:5175–5180 Koffas M, Roberge C, Lee K, Stephanopoulos G (1999) Metabolic engineering. Annu Rev Biomed Eng 1:535–557 Kuchner O, Arnold FH (1997) Directed evolution of enzyme catalysts. Trend Biotechnol 15:523–530 Kumar PBAN, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238 Kurumata M, Takahashi M, Sakamotoa A, Ramos JL, Nepovim A, Vanek T, Hirata T, Morikawa H (2005) Tolerance to, and uptake and degradation of 2,4,6-trinitrotoluene (TNT) are enhanced by the expression of a bacterial nitroreductase gene in Arabidopsis thaliana. Z Naturforsch 60:272–278 Lee JY, Jung KH, Choi SH, Kim HS (1995) Combination of the tod and the tol pathways in redesigning a metabolic route of Pseudomonas putida for the mineralization of a benzene, toluene, and p-xylene mixture. Appl Environ Microbiol 61:2211–2217 Lee JH, Hwang ET, Kim BC, Lee SM, Sang BI, Choi YS, Kim J, Gu MB (2007) Stable and continuous long-term enzymatic reaction using an enzyme—nanofiber composite. Appl Microbiol Biotechnol 75:1301–1307 Li T, Guo S, Wu B, Li F, Niu Z (2010) Effect of electric intensity on the microbial degradation of petroleum pollutants in soil. J Environ Sci 22:1381–1386 Marconi AM, Kieboom J, De Bont JAM (1997) Improving the catabolic functions in the toluene-resistant strain Pseudomonas putida s12. Biotechnol Lett 19:603–606 McCutcheon SC, Schnoor JL (2003) Phytoremediation: transformation and control of contaminants, vol 118. LibreDigital McMahon V, Garg A, Aldred D, Hobbs G, Smith R, Tothill I (2008) Composting and bioremediation process evaluation of wood waste materials generated from the construction and demolition industry. Chemosphere 71:1617–1628 Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int 37:1362–1375 Mulbry W, Ahrens E, Karns J (1998) Use of a field scale biofilter for the degradation of the organophosphate insecticide coumaphos in cattle dip wastes. Pestic Sci 52:268–274 Paul D, Pandey G, Pandey J, Jain RK (2005) Accessing microbial diversity for bioremediation and environmental restoration. Trend Biotechnol 23:135–142 Pazirandeh M, Wells BM, Ryan RL (1998) Development of bacterium-based heavy metal biosorbents: enhanced uptake of cadmium and mercury by Escherichia coli expressing a metal binding motif. Appl Environ Microbiol 64:4068–4072 Pei X-H, Zhan X-H, Wang S-M, Lin Y-S, Zhou L-X (2010) Effects of a biosurfactant and a synthetic surfactant on phenanthrene degradation by a Sphingomonas strain. Pedosphere 20:771–779 Pulford I, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees—a review. Environ Int 29:529–540 Ramos JL, Gonzalez-Perez MM, Caballero A, van Dillewijn P (2005) Bioremediation of polynitrated aromatic compounds: plants and microbes put up a fight. Curr Opin Biotechnol 16:275–281 Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181 Renukaradhya M, Shah AI et al (2010) Isolation of a novel gene encoding a 3,5,6-trichloro-2-pyridinol degrading enzyme from a cow rumen metagenomic library. Biodegradation 21:565–573 Rojo F, Pieper DH, Engesser KH, Knackmuss HJ, Timmis KN (1987) Assemblage of ortho cleavage route for simultaneous degradation of chloro- and methylaromatics. Science 238:1395–1398 Rylott EL, Jackson RG, Edwards J, Womack GL, Seth-Smith HMB, Rathbone DA, Strand SE, Bruce NC (2006) An explosive-degrading cytochrome P450 activity and its targeted application for the phytoremediation of RDX. Nat Biotechnol 24:216–219 Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Nat Biotechnol 13:468–474 Schnoor JL, Light LA, McCutcheon SC, Wolfe NL, Carreia LH (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 29:318–323 Scott C, Begley C, Taylor MJ, Pandey G, Momiroski V, French N, Brearley B, Kotsonis SE, Selleck MJ, Carino FA, Bajet CM, Clarke C, Oakeshott JG, Russell RJ (2011) Free enzyme bioremediation of pesticides. ACS symposium series book 1075:155–174 Shao Z, Zhao H, Giver L, Arnold FH (1998) Random-priming in vitro recombination: an effective tool for directed evolution. Nucleic Acids Res 26:681–683 Singer AC, Crowley DE, Thompson IP (2003) Secondary plant metabolites in phytoremediation and biotransformation. Trend Biotechnol 21:123–130 Singer AC, Thompson IP, Bailey MJ (2004) The tritrophic trinity: a source of pollutant-degrading enzymes and its implications for phytoremediation. Curr Opin Microbiol 7:239–244 Singh BK (2009) Organophosphorus-degrading bacteria: ecology and industrial applications. Nat Rev Microbiol 7:156–164 Singh BK (2010) Exploring microbial diversity for biotechnology: the way forward. Trend Biotechnol 28:111–116 Singh BK, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 30:428–471 Singh BK, Campbell C, Sorensen SJ, Zhou J (2009) Soil genomics is the way forward. Nat Rev Microbiol 7:756 Strong LC, McTavish H, Sadowsky MJ, Wackett LP (2000) Field-scale remediation of atrazine-contaminated soil using recombinant Escherichia coli expressing atrazine chlorohydrolase. Environ Microbiol 2:91–98 Sul WJ, Park J, Quensen JF III, Rodrigues JLM, Seliger L, Tsoi TV, Zylstra GJ, Tiedje JM (2009) DNA-stable isotope probing integrated with metagenomics for retrieval of biphenyl dioxygenase genes from polychlorinated biphenyl-contaminated river sediment. Appl Environ Microbiol 75:5501–5506 Tu C, Ma LQ, Zhang W, Cai Y, Harris WG (2003) Arsenic species and leachability in the fronds of the hyperaccumulator Chinese brake (Pteris vittata L.). Environ Pollut 124:223–230 Velkov VV (2001) Stress-induced evolution and the biosafety of genetically modified microorganisms released into the environment. J Biosci 26:667–683 Walker AW, Keasling JD (2002) Metabolic engineering of Pseudomonas putida for the utilization of parathion as a carbon and energy source. Biotechnol Bioeng 78:715–721 Wang XX et al (2008) Phytodegradation of organophosphorus compounds by transgenic plants expressing a bacterial organophosphorus hydrolase. Biochem Biophys Res Commun 365:453–458 Watanabe K (2001) Microorganisms relevant to bioremediation. Curr Opin Biotechnol 12:237–241 Wei S, Zhou QX (2006) Phytoremediation of cadmium-contaminated soils by Rorippa globosa using two-phase planting. Environ Sci Pollut Res 13:151–155 Yergeau E, Arbour M, Brousseau R, Juck D, Lawrence JR, Masson L, Whyte LG, Greer CW (2009) Microarray and real-time PCR analyses of the responses of high-arctic soil bacteria to hydrocarbon pollution and bioremediation treatments. Appl Environ Microbiol 75:6258–6267 Zhao H, Giver L, Shao Z, Affholter JA, Arnold FH (1998) Molecular evolution by staggered extension process (StEP) in vitro recombination. Nat Biotechnol 16:258–261 Zhao F, Lombi E, Breedon T (2000) Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant Cell Environ 23:507–514