Improvement of electrochemical performances of catechol-based supercapacitor electrodes by tuning the redox potential via different-sized O-protected catechol diazonium salts

Electrochimica Acta - Tập 265 - Trang 121-130 - 2018
Ewen Touzé1, Frédéric Gohier1, Barbara Daffos2,3, Pierre‐Louis Taberna2,3, Charles Cougnon1
1CIMMA - Chimie, Ingénierie Moléculaire et Matériaux d'Angers (France)
2CIRIMAT - Centre interuniversitaire de recherche et d'ingenierie des matériaux (CIRIMAT, Université Toulouse 3 Paul Sabatier, Toulouse INP, CNRS, Université de Toulouse, 118 Route de Narbonne, 31062 Toulouse cedex 9 - France ; CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, 4 allée Emile Monso - BP44362, 31030 Toulouse cedex 4 - France - France)
3RS2E - Réseau sur le stockage électrochimique de l'énergie (Université de Picardie Jules Verne - 33 rue Saint-Leu - 80039 AMIENS CEDEX 1 - France)

Tóm tắt

Từ khóa


Tài liệu tham khảo

Leitner, 2004, Combination of redox capacity and double layer capacitance in composite electrodes through immobilization of an organic redox couple on carbon black, Electrochim. Acta, 50, 199, 10.1016/j.electacta.2004.07.030

Isikli, 2012, Substrate-dependent performance of supercapacitors based on an organic redox couple impregnated on carbon, J. Power Sources, 206, 53, 10.1016/j.jpowsour.2012.01.088

Smith, 2009, Novel electroactive surface functionality from the coupling of an aryl diamine to carbon black, Electrochem. Commun., 11, 10, 10.1016/j.elecom.2008.10.014

Algharaibeh, 2009, An asymmetric anthraquinone-modified carbon/ruthenium oxide supercapacitor, J. Power Sources, 187, 640, 10.1016/j.jpowsour.2008.11.012

Kalinathan, 2008, Anthraquinone modified carbon fabric supercapacitors with improved energy and power densities, J. Power Sources, 181, 182, 10.1016/j.jpowsour.2008.03.032

Weissmann, 2012, Electrochemical study of anthraquinone groups, grafted by the diazonium chemistry, in different aqueous media-relevance for the development of aqueous hybrid electrochemical capacitor, Electrochim. Acta, 82, 250, 10.1016/j.electacta.2012.05.130

Madec, 2012, In situ redox functionalization of composite electrodes for high power–high energy electrochemical storage systems via a non-covalent approach, Energy Environ. Sci., 5, 5379, 10.1039/C1EE02490F

Lebègue, 2012, Direct introduction of redox centers at activated carbon substrate based on acid-substituent-assisted diazotization, Electrochem. Commun., 25, 124, 10.1016/j.elecom.2012.09.034

Lebègue, 2013, Chemical functionalization of activated carbon through radical and diradical intermediates, Electrochem. Commun., 34, 14, 10.1016/j.elecom.2013.05.014

Isikli, 2014, Influence of quinone grafting via Friedel–Crafts reaction on carbon porous structure and supercapacitor performance, Carbon, 66, 654, 10.1016/j.carbon.2013.09.062

Pognon, 2011, Performance and stability of electrochemical capacitor based on anthraquinone modified activated carbon, J. Power Sources, 196, 4117, 10.1016/j.jpowsour.2010.09.097

Le Comte, 2013, Determination of the quinone-loading of a modified carbon powder-based electrode for electrochemical capacitor, Electrochemistry, 81, 863, 10.5796/electrochemistry.81.863

Abbas, 2015, Strategies to improve the performance of carbon/carbon capacitors in salt aqueous electrolytes, J. Electrochem. Soc., 162, A5148, 10.1149/2.0241505jes

Chen, 2014, Anthraquinone on porous carbon nanotubes with improved supercapacitor performance, J. Phys. Chem. C, 118, 8262, 10.1021/jp5009626

Le Comte, 2014, Simpler and greener grafting method for improving the stability of anthraquinone-modified carbon electrode in alkaline media, Electrochim. Acta, 137, 447, 10.1016/j.electacta.2014.05.155

Cougnon, 2015, Impedance spectroscopy study of a catechol-modified activated carbon electrode as active material in electrochemical capacitor, J. Power Sources, 274, 551, 10.1016/j.jpowsour.2014.10.091

Algharaibeh, 2011, An asymmetric supercapacitor with anthraquinone and dihydroxybenzene modified carbon fabric electrodes, Electrochem. Commun., 13, 147, 10.1016/j.elecom.2010.11.036

Lebègue, 2014, Toward fully organic rechargeable charge storage devices based on carbon electrodes grafted with redox molecules, J. Mater. Chem., 2, 8599, 10.1039/C4TA00853G

An, 2015, Graphene hydrogels non-covalently functionalized with alizarin: an ideal electrode material for symmetric supercapacitors, J. Mater. Chem., 3, 22239, 10.1039/C5TA05812K

Su, 2017, Asymmetric Faradaic systems for selective electrochemical separations, Energy Environ. Sci., 10, 1272, 10.1039/C7EE00066A

Karlsson, 2012, Computational electrochemistry study of 16 isoindole-4,7-diones as candidates for organic cathode materials, J. Phys. Chem. C, 116, 3793, 10.1021/jp211851f

Hernández-Burgos, 2014, Theoretical studies of carbonyl-based organic molecules for energy storage applications: the heteroatom and substituent effect, J. Phys. Chem. C, 118, 6046, 10.1021/jp4117613

Araujo, 2017, Designing strategies to tune reduction potential of organic molecules for sustainable high capacity battery application, J. Mater. Chem., 5, 4430, 10.1039/C6TA09760J

Burkhardt, 2012, Tailored redox functionality of small organics for pseudocapacitive electrodes, Energy Environ. Sci., 5, 7176, 10.1039/c2ee21255b

Pognon, 2012, Catechol-modified activated carbon prepared by the diazonium chemistry for application as active electrode material in electrochemical capacitor, ACS Appl. Mater. Interfaces, 4, 3788, 10.1021/am301284n

Uchiyama, 2007, Electrochemical introduction of amino group to a glassy carbon surface by the electrolysis of carbamic acid, J. Electrochem. Soc., 154, F31, 10.1149/1.2402127

Wildgoose, 2007, Electrolysis of ammonium carbamate: a voltammetric and X-ray photoelectron spectroscopic investigation into the modification of carbon electrodes, Int. J. Electrochem. Sci., 2, 809, 10.1016/S1452-3981(23)17114-8

Nagaoka, 1986, Surface properties of electrochemically pretreated glassy carbon, Anal. Chem., 58, 1037, 10.1021/ac00297a012

Kumar, 2010, Selective covalent immobilization of catechol on activated carbon electrodes, J. Electroanal. Chem., 641, 131, 10.1016/j.jelechem.2009.12.016

Kumar, 2010, Electrochemical-assisted encapsulation of catechol on a multiwalled carbon nanotube modified electrode, Langmuir, 26, 6874, 10.1021/la100462r

Trammell, 2009, Synthesis and electrochemistry of self-assembled monolayers containing quinone derivatives with varying electronic conjugation, J. Electroanal. Chem., 628, 125, 10.1016/j.jelechem.2009.01.023

Nguyen, 2009, Deprotection of arenediazonium tetrafluoroborate ethers with BBr3, J. Org. Chem., 74, 3955, 10.1021/jo8027906

Li, 2012, First-in-class small molecule inhibitors of the single-strand DNA cytosine deaminase APOBEC3G, ACS Chem. Biol., 7, 506, 10.1021/cb200440y

Hong, 2012, Agent-free synthesis of graphene oxide/transition metal oxide composites and its application for hydrogen storage, Int. J. Hydrogen Energy, 37, 7594, 10.1016/j.ijhydene.2012.02.010

Pendashteh, 2013, Fabrication of anchored copper oxide nanoparticles on graphene oxide nanosheets via an electrostatic coprecipitation and its application as supercapacitor, Electrochim. Acta, 88, 347, 10.1016/j.electacta.2012.10.088

Andresen, 2006, Properties and characterization of hydrophobized microfibrillated cellulose, Cellulose, 13, 665, 10.1007/s10570-006-9072-1

Leroux, 2010, Efficient covalent modification of a carbon surface: use of a silyl protecting group to form an active monolayer, J. Am. Chem. Soc., 132, 14039, 10.1021/ja106971x

Toupin, 2007, Thermal stability study of aryl modified carbon black by in situ generated diazonium salt, J. Phys. Chem. C, 111, 5394, 10.1021/jp066868e

Doppelt, 2007, Surface modification of conducting substrates. Existence of azo bonds in the structure of organic layers obtained from diazonium salts, Chem. Mater., 19, 4570, 10.1021/cm0700551

Hurley, 2004, Covalent bonding of organic molecules to Cu and Al alloy 2024 T3 surfaces via diazonium ion reduction, J. Electrochem. Soc., 151, B252, 10.1149/1.1687428

Madec, 2014, Redirected charge transport arising from diazonium grafting of carbon coated LiFePO4, Phys. Chem. Chem. Phys., 16, 22745, 10.1039/C4CP03174A

Liu, 2011, The fabrication of stable gold nanoparticle-modified interfaces for electrochemistry, Langmuir, 27, 4176, 10.1021/la104373v

Brant, 1976, X-ray photoelectron spectra of aryldiazo derivatives of transition metals, J. Organomet. Chem., 120, C53, 10.1016/S0022-328X(00)98062-8

Finn, 1972, Nitrogen ls binding energies of some azide, dinitrogen, and nitride complexes of transition metals, Inorg. Chem., 11, 1434, 10.1021/ic50112a056

Bockman, 1997, Isolation and structure elucidation of transient (colored) complexes of arenediazonium with aromatic hydrocarbons as intermediates in arylations and azo couplings, J. Org. Chem., 62, 5811, 10.1021/jo970540n

Menanteau, 2016, Electrografting via diazonium chemistry: the key role of the aryl substituent in the layer growth mechanism, J. Phys. Chem. C, 120, 4423, 10.1021/acs.jpcc.5b12565

Xie, 1990, X-ray photoelectron spectroscopic studies of carbon fiber surfaces. Differences in the surface chemistry and bulk structure of different carbon fibers based on poly(acrylonitrile) and pitch and comparison with various graphite samples, Chem. Mater., 2, 293, 10.1021/cm00009a020

Leroux, 2013, Nanostructured monolayers on carbon substrates prepared by electrografting of protected aryldiazonium salts, Chem. Mater., 25, 489, 10.1021/cm303844v

Lehr, 2011, Spontaneous grafting of nitrophenyl groups to planar glassy carbon substrates: evidence for two mechanisms, J. Phys. Chem. C, 115, 6629, 10.1021/jp111838r

Sing, 1985, Pure Appl. Chem., 57, 603, 10.1351/pac198557040603

Pognon, 2011, Effect of molecular grafting on the pore size distribution and the double layer capacitance of activated carbon for electrochemical double layer capacitors, Carbon, 49, 1340, 10.1016/j.carbon.2010.11.055