Comparative toxicity of silver nanoparticles (AgNPs) and silver nanowires (AgNWs) on saltwater microcrustacean, Artemia salina

Hyo Jin An1, Mehrdad Sarkheil2, Hye Seon Park1, Il Je Yu3, Seyed Ali Johari4
1Biotoxtech Co., Ltd., Cheongju, Republic of Korea
2Department of Fisheries, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad, Mashhad, Iran
3HCTm CO., LTD, Icheon, Republic of Korea
4Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Iran

Tài liệu tham khảo

Artal, 2013, The role of silver and vanadium release in the toxicity of silver vanadate nanowires toward Daphnia similis, Environ. Toxicol. Chem., 32, 908, 10.1002/etc.2128 Arulvasu, 2014, Toxicity effect of silver nanoparticles in brine shrimp Artemia, Sci. World J., 2014, 1, 10.1155/2014/256919 Asghari, 2012, Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna, Beilstein J. Nanotechnol., 10, 14 Ates, 2014, Accumulation and toxicity of CuO and ZnO nanoparticles through waterborne and dietary exposure of goldfish (Carassius auratus), Environ. Toxicol., 30, 119, 10.1002/tox.22002 Ates, 2015, Evaluation of alpha and gamma aluminum oxide nanoparticle accumulation, toxicity, and depuration in Artemia salina larvae, Environ. Toxicol., 24, 296 Baalousha, 2010, Natural colloids and manufactured nanoparticles in aquatic and terrestrial systems, 3, 89 Bachenheimer, 2017, Degradation mechanism of Ag nanorods for surface enhanced raman spectroscopy, Sci. Rep., 7, 4, 10.1038/s41598-017-16580-2 Becaro, 2015, Toxicity of PVA-stabilized silver nanoparticles to algae and microcrustaceans, Environ. Nanotechnol. Monit. Manag., 3, 22 Bhuvaneshwari, 2018, Toxicity and trophic transfer of P25 TiO2NPs from Dunaliella salina to Artemia salina: effect of dietary and waterborne exposure, Environ. Res., 160, 39, 10.1016/j.envres.2017.09.022 Cazenave, 2006, Differential detoxification and antioxidant response in diverse organs of Corydoras paleatus experimentally exposed to microcystin-RR, Aquat. Toxicol., 76, 1, 10.1016/j.aquatox.2005.08.011 Chae, 2016, Toxicity and transfer of polyvinylpyrrolidone-coated silver nanowires in an aquatic food chain consisting of algae, water fleas, and zebrafish, Aquat. Toxicol., 173, 94, 10.1016/j.aquatox.2016.01.011 Choi, 2008, Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria, Environ. Sci. Technol., 42, 4583, 10.1021/es703238h Choi, 2008, The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth, Water Res., 42, 3066, 10.1016/j.watres.2008.02.021 Chupani, 2017, Effects of chronic dietary exposure of zinc oxide nanoparticles on the serum protein profile of juvenile common carp (Cyprinus carpio L.), Sci. Total Environ., 579, 1504, 10.1016/j.scitotenv.2016.11.154 Chupani, 2018, Insight into the modulation of intestinal proteome of juvenile common carp (Cyprinus carpio L.) after dietary exposure to ZnO nanoparticles, Sci. Total Environ., 613–614, 62, 10.1016/j.scitotenv.2017.08.129 Chupani, 2018, Chronic dietary toxicity of zinc oxide nanoparticles in common carp (Cyprinus carpio L.): tissue accumulation and physiological responses, Ecotoxicol. Environ. Saf., 147, 110, 10.1016/j.ecoenv.2017.08.024 Clemente, 2014, Minimal levels of ultraviolet light enhance the toxicity of TiO2 nanoparticles to two representative organisms of aquatic systems, J. Nanopart. Res., 16, 10.1007/s11051-014-2559-z Cui, 2015, Preparation of graphene oxide with silver nanowires to enhance antibacterial properties and cell compatibility, RSC Adv., 5, 85748, 10.1039/C5RA16371D Dalai, 2014, Different modes of TiO2 uptake by Ceriodaphnia dubia: relevance to toxicity and bioaccumulation, Aquat. Toxicol., 152, 139, 10.1016/j.aquatox.2014.04.002 Falugi, 2012, Toxicity of metal oxide nanoparticles in immune cells of the sea urchin, Mar. Environ. Res., 76, 114, 10.1016/j.marenvres.2011.10.003 Falugi, 2013, Dose dependent effects of silver nanoparticles on reproduction and development of different biological models. EQA - international, J. Environ. Qual., 8, 61 Gambardella, 2013, Developmental abnormalities and changes in cholinesterase activity in sea urchin embryos and larvae from sperm exposed to engineered nanoparticles, Aquat. Toxicol., 130–131, 77, 10.1016/j.aquatox.2012.12.025 Gambardella, 2015, Effect of silver nanoparticles on marine organisms belonging to different trophic levels, Mar. Environ. Res., 111, 41, 10.1016/j.marenvres.2015.06.001 George, 2012, Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential in a fish gill cell line and zebrafish embryos, ACS Nano, 6, 3745, 10.1021/nn204671v Gottfredsen, 2013, Hydrogen peroxide induce modifications of human extracellular superoxide dismutase that results in enzyme inhibition, Redox Biol., 1, 24, 10.1016/j.redox.2012.12.004 He, 2011, Silver nanoparticle−reactive oxygen species interactions: application of a charging−discharging model, J. Phys. Chem. C, 115, 5461, 10.1021/jp111275a Hong, 2016, Shape effect on the antibacterial activity of silver nanoparticles synthesized via a microwave-assisted method, Environ. Sci. Pollut. Res., 23, 4489, 10.1007/s11356-015-5668-z Hoop, 2016, Magnetically driven silver-coated nanocoils for efficient bacterial contact killing, Adv. Funct. Mater., 26, 1063, 10.1002/adfm.201504463 ISO TS 20787, International Organization for Standardization, 2017 Jiang, 2014, Silver nanoparticles induced accumulation of reactive oxygen species and alteration of antioxidant systems in the aquatic plant Spirodela polyrhiza, Environ. Toxicol. Chem., 33, 1398, 10.1002/etc.2577 Johari, 2013, Toxicity comparison of colloidal silver nanoparticles in various life stages of rainbow trout (Oncorhynchus mykiss), Iran. J. Fish. Sci., 12, 76 Johari, 2018, Influence of salinity on the toxicity of silver nanoparticles (AgNPs) and silver nitrate (AgNO3) in halophilic microalgae, Dunaliella salina, Chemosphere, 209, 156, 10.1016/j.chemosphere.2018.06.098 Johari, 2018, 6516 Jones, 2018, Silver nanowires: synthesis, antibacterial activity and biomedical applications, Appl. Sci., 8, 673, 10.3390/app8050673 Keller, 2013, Global life cycle releases of engineered nanomaterials, J. Nanopart. Res., 15, 10.1007/s11051-013-1692-4 Kos, 2016, A case study to optimise and validate the brine shrimp Artemia franciscana immobilization assay with silver nanoparticles: the role of harmonisation, Environ. Pollut., 213, 173, 10.1016/j.envpol.2016.02.015 Kumar, 2017, Toxicity assessment of zero valent iron nanoparticles on Artemia salina, Environ. Toxicol., 32, 1617, 10.1002/tox.22389 Kwak, 2015, A review of the ecotoxicological effects of nanowires, Int. J. Environ. Sci. Technol., 12, 1163, 10.1007/s13762-014-0727-4 Langley, 2013, Flexible transparent conductive materials based on silver nanowire networks: a review, Nanotechnology, 24, 10.1088/0957-4484/24/45/452001 Lee, 2008, Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli, Environ. Sci. Technol., 42, 4927, 10.1021/es800408u Li, 2008, The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles, Free Radic. Biol. Med., 44, 1689, 10.1016/j.freeradbiomed.2008.01.028 Lim, 2012, Oxidative stress-related PMK-1 P38 MAPK activation as a mechanism for toxicity of silver nanoparticles to reproduction in the nematode Caenorhabditis elegans, Environ. Toxicol. Chem., 31, 585, 10.1002/etc.1706 Liochev, 2000, Copper- and zinc-containing superoxide dismutase can act as a superoxide reductase and a superoxide oxidase, J. Biol. Chem., 275, 38482, 10.1074/jbc.M007891200 Manke, 2013, Mechanisms of nanoparticle-induced oxidative stress and toxicity, Biomed. Res. Int., 2013, 10.1155/2013/942916 Massarsky, 2013, Chemo sphere assessment of nanosilver toxicity during zebrafish (Danio rerio) development, Chemosphere, 92, 59, 10.1016/j.chemosphere.2013.02.060 Ostman, 2001, Regulation of receptor tyrosine kinase signaling by protein tyrosine phosphatases, Trends Cell Biol., 11, 258, 10.1016/S0962-8924(01)01990-0 Oukarroum, 2012, Temperature influence on silver nanoparticles inhibitory effect on photosystem II photochemistry in two green algae, Chlorella vulgaris and Dunaliella tertiolecta, Environ. Sci. Pollut. Res., 19, 1755, 10.1007/s11356-011-0689-8 Prabhu, 2012, Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects, Int. Nano Lett., 2, 32, 10.1186/2228-5326-2-32 Scanlan, 2013, Silver nanowire exposure results in internalization and toxicity to Daphnia magna, ACS Nano, 7, 10681, 10.1021/nn4034103 Shvedova, 2012, Mechanisms of carbon nanotube-induced toxicity: focus on pulmonary inflammation, Toxicol. Appl. Pharmacol., 261, 121, 10.1016/j.taap.2012.03.023 Sohn, 2015, Aquatic toxicity comparison of silver nanoparticles and silver nanowires, Biomed. Res. Int., 2015, 10.1155/2015/893049 Sund, 2011, Proteomic characterization of engineered nanomaterial-protein interactions in relation to surface reactivity, ACS Nano, 5, 4300, 10.1021/nn101492k Ulm, 2015, Response of biochemical biomarkers in the aquatic crustacean Daphnia magna exposed to silver nanoparticles, Environ. Sci. Pollut. Res., 22, 19990, 10.1007/s11356-015-5201-4 Visnapuu, 2013, Dissolution of silver nanowires and nanospheres dictates their toxicity to Escherichia coli, Biomed. Res. Int., 2013 Wang, 2016, Trophic transfer and accumulation of TiO2 nanoparticles from clamworm (Perinereis aibuhitensis) to juvenile turbot (Scophthalmus maximus) along a marine benthic food chain, Water Res., 95, 250, 10.1016/j.watres.2016.03.027 Wang, 2017, Toxicity of α-Fe2O3 nanoparticles to Artemia salina cysts and three stages of larvae, Sci. Total Environ., 598, 847, 10.1016/j.scitotenv.2017.04.183 Wu, 2013, Silver nanoparticles cause oxidative damage and histological changes in medaka (Oryzias latipes) after 14 days of exposure, Environ. Toxicol. Chem., 32, 165, 10.1002/etc.2038 Zhu, 2016, Toxicological effects of multi-walled carbon nanotubes on Saccharomyces cerevisiae: the uptake kinetics and mechanisms and the toxic responses, J. Hazard. Mater., 318, 650, 10.1016/j.jhazmat.2016.07.049 Zhu, 2017, Developmental toxicity of oxidized multi-walled carbon nanotubes on Artemia salina cysts and larvae: uptake, accumulation, excretion and toxic responses, Environ. Pollut., 229, 679, 10.1016/j.envpol.2017.07.020 Zhu, 2017, Toxicity evaluation of graphene oxide on cysts and three larval stages of Artemia salina, Sci. Total Environ., 595, 101, 10.1016/j.scitotenv.2017.03.224