Axonal Charcot–Marie–Tooth disease patient-derived motor neurons demonstrate disease-specific phenotypes including abnormal electrophysiological properties
Tài liệu tham khảo
Baloh, 2007, Altered axonal mitochondrial transport in the pathogenesis of Charcot–Marie–Tooth disease from mitofusin 2 mutations, J. Neurosci., 27, 422, 10.1523/JNEUROSCI.4798-06.2007
Brennand, 2011, Modelling schizophrenia using human induced pluripotent stem cells, Nature, 473, 221, 10.1038/nature09915
Burkhardt, 2013, A cellular model for sporadic ALS using patient-derived induced pluripotent stem cells, Mol. Cell. Neurosci., 56, 355, 10.1016/j.mcn.2013.07.007
Burns, 2009, Ascorbic acid for Charcot–Marie–Tooth disease type 1A in children: a randomised, double-blind, placebo-controlled, safety and efficacy trial, Lancet Neurol., 8, 537, 10.1016/S1474-4422(09)70108-5
Chambers, 2009, Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling, Nat. Biotechnol., 27, 275, 10.1038/nbt.1529
d'Ydewalle, 2011, HDAC6 inhibitors reverse axonal loss in a mouse model of mutant HSPB1-induced Charcot–Marie–Tooth disease, Nat. Med., 968, 10.1038/nm.2396
Dimos, 2008, Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons, Science, 321, 1218, 10.1126/science.1158799
Ebert, 2009, Induced pluripotent stem cells from a spinal muscular atrophy patient, Nature, 457, 277, 10.1038/nature07677
Gentil, 2012, Normal role of the low-molecular-weight neurofilament protein in mitochondrial dynamics and disruption in Charcot–Marie–Tooth disease, FASEB J., 26, 1194, 10.1096/fj.11-196345
Han, 2012, Nav1.7-related small fiber neuropathy: impaired slow-inactivation and DRG neuron hyperexcitability, Neurology, 78, 1635, 10.1212/WNL.0b013e3182574f12
Harding, 1980, The clinical features of hereditary motor and sensory neuropathy types I and II, Brain, 103, 259, 10.1093/brain/103.2.259
Johnson, 2007, Functional neural development from human embryonic stem cells: accelerated synaptic activity via astrocyte coculture, J. Neurosci., 27, 3069, 10.1523/JNEUROSCI.4562-06.2007
Kazuki, 2010, Complete genetic correction of iPS cells from Duchenne muscular dystrophy, Mol. Ther., 18, 386, 10.1038/mt.2009.274
Kuo, 2004, Hyperexcitability of cultured spinal motoneurons from presymptomatic ALS mice, J. Neurophysiol., 91, 571, 10.1152/jn.00665.2003
Landouré, 2010, Mutations in TRPV4 cause Charcot–Marie–Tooth disease type 2C, Nat. Genet., 42, 170, 10.1038/ng.512
Lee, 2009, Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs, Nature, 461, 402, 10.1038/nature08320
Lewis, 2013, High-dosage ascorbic acid treatment in Charcot–Marie–Tooth disease type 1A: results of a randomized, double-masked, controlled trial, JAMA Neurol., 70, 981, 10.1001/jamaneurol.2013.3178
Mentis, 2007, Early alterations in the electrophysiological properties of rat spinal motoneurones following neonatal axotomy, J. Physiol., 582, 1141, 10.1113/jphysiol.2007.133488
Mersiyanova, 2000, A new variant of Charcot–Marie–Tooth disease type 2 is probably the result of a mutation in the neurofilament-light gene, Am. J. Hum. Genet., 67, 37, 10.1086/302962
Micallef, 2009, Effect of ascorbic acid in patients with Charcot–Marie–Tooth disease type 1A: a multicentre, randomised, double-blind, placebo-controlled trial, Lancet Neurol., 8, 1103, 10.1016/S1474-4422(09)70260-1
Misko, 2010, Mitofusin 2 is necessary for transport of axonal mitochondria and interacts with the Miro/Milton complex, J. Neurosci., 30, 4232, 10.1523/JNEUROSCI.6248-09.2010
Misko, 2012, Mitofusin2 mutations disrupt axonal mitochondrial positioning and promote axon degeneration, J. Neurosci., 32, 4145, 10.1523/JNEUROSCI.6338-11.2012
Nelis, 1996, Estimation of the mutation frequencies in Charcot–Marie–Tooth disease type 1 and hereditary neuropathy with liability to pressure palsies: a European collaborative study, Eur. J. Hum. Genet., 4, 25, 10.1159/000472166
Pareyson, 2011, Ascorbic acid in Charcot–Marie–Tooth disease type 1A (CMT-TRIAAL and CMT-TRAUK): a double-blind randomised trial, Lancet Neurol., 10, 320, 10.1016/S1474-4422(11)70025-4
Passage, 2004, Ascorbic acid treatment corrects the phenotype of a mouse model of Charcot–Marie–Tooth disease, Nat. Med., 10, 396, 10.1038/nm1023
Perez-Olle, 2004, Phenotypic analysis of neurofilament light gene mutations linked to Charcot–Marie–Tooth disease in cell culture models, Hum. Mol. Genet., 13, 2207, 10.1093/hmg/ddh236
Pérez-Ollé, 2005, Mutations in the neurofilament light gene linked to Charcot–Marie–Tooth disease cause defects in transport, J. Neurochem., 93, 861, 10.1111/j.1471-4159.2005.03095.x
Saporta, 2013, Inherited peripheral neuropathies, Neurol. Clin., 31, 597, 10.1016/j.ncl.2013.01.009
Saporta, 2011, Induced pluripotent stem cells in the study of neurological diseases, Stem Cell Res. Ther., 2, 37, 10.1186/scrt78
Takahashi, 2006, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors, Cell, 126, 663, 10.1016/j.cell.2006.07.024
Takahashi, 2007, Induction of pluripotent stem cells from adult human fibroblasts by defined factors, Cell, 131, 861, 10.1016/j.cell.2007.11.019
Wainger, 2014, Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis patient-derived motor neurons, Cell Rep., 7, 1, 10.1016/j.celrep.2014.03.019
Zona, 2006, Voltage-dependent sodium channels in spinal cord motor neurons display rapid recovery from fast inactivation in a mouse model of amyotrophic lateral sclerosis, J. Neurophysiol., 96, 3314, 10.1152/jn.00566.2006
Züchner, 2004, Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot–Marie–Tooth neuropathy type 2A, Nat. Genet., 36, 449, 10.1038/ng1341