Bi-directional Control of Walking Behavior by Horizontal Optic Flow Sensors

Current Biology - Tập 28 - Trang 4037-4045.e5 - 2018
Christian Busch1, Alexander Borst1, Alex S. Mauss1
1Circuits - Computation - Models, Max Planck Institute of Neurobiology, Am Klopferspitz 18, Martinsried 82152, Germany

Tài liệu tham khảo

Egelhaaf, 2014, Motion as a source of environmental information: a fresh view on biological motion computation by insect brains, Front. Neural Circuits, 8, 127, 10.3389/fncir.2014.00127 Borst, 2014, Fly visual course control: behaviour, algorithms and circuits, Nat. Rev. Neurosci., 15, 590, 10.1038/nrn3799 Mauss, 2017, Motion vision in arthropods Krapp, 2000, Neuronal matched filters for optic flow processing in flying insects, Int. Rev. Neurobiol., 44, 93, 10.1016/S0074-7742(08)60739-4 Krapp, 2008, Central processing of visual information in insects, 131 Hausen, 1984, The lobula-complex of the fly: structure, function and significance in visual behaviour, 523 Schnell, 2010, Processing of horizontal optic flow in three visual interneurons of the Drosophila brain, J. Neurophysiol., 103, 1646, 10.1152/jn.00950.2009 Krapp, 1996, Estimation of self-motion by optic flow processing in single visual interneurons, Nature, 384, 463, 10.1038/384463a0 Wasserman, 2015, Olfactory neuromodulation of motion vision circuitry in Drosophila, Curr. Biol., 25, 467, 10.1016/j.cub.2014.12.012 Karmeier, 2006, Encoding of naturalistic optic flow by a population of blowfly motion-sensitive neurons, J. Neurophysiol., 96, 1602, 10.1152/jn.00023.2006 Kern, 2005, Function of a fly motion-sensitive neuron matches eye movements during free flight, PLoS Biol., 3, e171, 10.1371/journal.pbio.0030171 Huston, 2008, Visuomotor transformation in the fly gaze stabilization system, PLoS Biol., 6, e173, 10.1371/journal.pbio.0060173 Götz, 1973, Visual control of locomotion in the walking fruit fly Drosophila, J. Comp. Physiol., 85, 235, 10.1007/BF00694232 Fujiwara, 2017, A faithful internal representation of walking movements in the Drosophila visual system, Nat. Neurosci., 20, 72, 10.1038/nn.4435 Haikala, 2013, Optogenetic control of fly optomotor responses, J. Neurosci., 33, 13927, 10.1523/JNEUROSCI.0340-13.2013 Kim, 2017, Quantitative predictions orchestrate visual signaling in Drosophila, Cell, 168, 280, 10.1016/j.cell.2016.12.005 Mauss, 2014, Optogenetic and pharmacologic dissection of feedforward inhibition in Drosophila motion vision, J. Neurosci., 34, 2254, 10.1523/JNEUROSCI.3938-13.2014 Maisak, 2013, A directional tuning map of Drosophila elementary motion detectors, Nature, 500, 212, 10.1038/nature12320 Mauss, 2015, Neural circuit to integrate opposing motions in the visual field, Cell, 162, 351, 10.1016/j.cell.2015.06.035 Braitenberg, 1986 Buchner, 1984, Deoxyglucose mapping of nervous activity induced in Drosophila brain by visual movement, J. Comp. Physiol., 155, 471, 10.1007/BF00611912 Inagaki, 2014, Optogenetic control of Drosophila using a red-shifted channelrhodopsin reveals experience-dependent influences on courtship, Nat. Methods, 11, 325, 10.1038/nmeth.2765 Lin, 2013, ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation, Nat. Neurosci., 16, 1499, 10.1038/nn.3502 Mauss, 2017, Optogenetic neuronal silencing in Drosophila during visual processing, Sci. Rep., 7, 13823, 10.1038/s41598-017-14076-7 Govorunova, 2015, NEUROSCIENCE. Natural light-gated anion channels: A family of microbial rhodopsins for advanced optogenetics, Science, 349, 647, 10.1126/science.aaa7484 Jenett, 2012, A GAL4-driver line resource for Drosophila neurobiology, Cell Rep., 2, 991, 10.1016/j.celrep.2012.09.011 Silies, 2013, Modular use of peripheral input channels tunes motion-detecting circuitry, Neuron, 79, 111, 10.1016/j.neuron.2013.04.029 Mauss, 2017, Visual circuits for direction selectivity, Annu. Rev. Neurosci., 40, 211, 10.1146/annurev-neuro-072116-031335 Borst, 2015, Common circuit design in fly and mammalian motion vision, Nat. Neurosci., 18, 1067, 10.1038/nn.4050 Wylie, 1998, Common reference frame for neural coding of translational and rotational optic flow, Nature, 392, 278, 10.1038/32648 Duffy, 1991, Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli, J. Neurophysiol., 65, 1329, 10.1152/jn.1991.65.6.1329 Ibbotson, 1991, Wide-field motion-sensitive neurons tuned to horizontal movement in the honeybee, Apis mellifera, J. Comp. Physiol. A, 168, 91, 10.1007/BF00217107 Collett, 1966, Binocular, directionally selective neurones, possibly involved in the optomotor response of insects, Nature, 212, 1330, 10.1038/2121330a0 Elyada, 2009, Different receptive fields in axons and dendrites underlie robust coding in motion-sensitive neurons, Nat. Neurosci., 12, 327, 10.1038/nn.2269 Heisenberg, 1978, Optomotor-blindH31 – a Drosophila mutant of the lobula plate giant neurons, J. Comp. Physiol., 124, 287, 10.1007/BF00661379 Geiger, 1981, Visual orientation behaviour of flies after selective laser beam ablation of interneurones, Nature, 293, 398, 10.1038/293398a0 Hausen, 1990, Neural circuits mediating visual flight control in flies. II. Separation of two control systems by microsurgical brain lesions, J. Neurosci., 10, 351, 10.1523/JNEUROSCI.10-01-00351.1990 Borst, 2011, Neural action fields for optic flow based navigation: a simulation study of the fly lobula plate network, PLoS ONE, 6, e16303, 10.1371/journal.pone.0016303 Haag, 2001, Recurrent network interactions underlying flow-field selectivity of visual interneurons, J. Neurosci., 21, 5685, 10.1523/JNEUROSCI.21-15-05685.2001 Suver, 2016, An array of descending visual interneurons encoding self-motion in Drosophila, J. Neurosci., 36, 11768, 10.1523/JNEUROSCI.2277-16.2016 Namiki, 2018, The functional organization of descending sensory-motor pathways in Drosophila, eLife, 7, e10806, 10.7554/eLife.34272 Haag, 2010, Central gating of fly optomotor response, Proc. Natl. Acad. Sci. USA, 107, 20104, 10.1073/pnas.1009381107 Cabrera, 2013, Flying fruit flies correct for visual sideslip depending on relative speed of forward optic flow, Front. Behav. Neurosci., 7, 76, 10.3389/fnbeh.2013.00076 Schuster, 2002, Virtual-reality techniques resolve the visual cues used by fruit flies to evaluate object distances, Curr. Biol., 12, 1591, 10.1016/S0960-9822(02)01141-7 Pick, 2005, Goal-driven behavioral adaptations in gap-climbing Drosophila, Curr. Biol., 15, 1473, 10.1016/j.cub.2005.07.022 Zabala, 2012, A simple strategy for detecting moving objects during locomotion revealed by animal-robot interactions, Curr. Biol., 22, 1344, 10.1016/j.cub.2012.05.024 Chiappe, 2010, Walking modulates speed sensitivity in Drosophila motion vision, Curr. Biol., 20, 1470, 10.1016/j.cub.2010.06.072 Maimon, 2010, Active flight increases the gain of visual motion processing in Drosophila, Nat. Neurosci., 13, 393, 10.1038/nn.2492 Kim, 2015, Cellular evidence for efference copy in Drosophila visuomotor processing, Nat. Neurosci., 18, 1247, 10.1038/nn.4083 von Reyn, 2014, A spike-timing mechanism for action selection, Nat. Neurosci., 17, 962, 10.1038/nn.3741 Mauss, 2016, Electrophysiological recordings from lobula plate tangential cells in Drosophila, Methods Mol. Biol., 1478, 321, 10.1007/978-1-4939-6371-3_20 Bahl, 2013, Object tracking in motion-blind flies, Nat. Neurosci., 16, 730, 10.1038/nn.3386