Distance colorings of hypercubes from Z 2 Z 4 -linear codes
Tài liệu tham khảo
Abualrub, 2014, Z2Z4-additive cyclic codes, IEEE Trans. Inform. Theory, 60, 1508, 10.1109/TIT.2014.2299791
Borges, 2010, Z2Z4-linear codes: generator matrices and duality, Des. Codes Cryptogr., 54, 167, 10.1007/s10623-009-9316-9
Bilal, 2011, Maximum distance separable codes over Z4 and Z2×Z4, Des. Codes Cryptogr., 61, 31, 10.1007/s10623-010-9437-1
Calderbank, 1997, Construction of a (64,237,12) code via Galois rings, Des. Codes Cryptogr., 10, 157, 10.1023/A:1008240319733
Calderbank, 1996, Cyclic codes over Z4, locator polynomials, and Newton’s identities, IEEE Trans. Inform. Theory, 42, 217, 10.1109/18.481791
Fu, 2013, New results on two hypercube coloring problems, Discrete Appl. Math., 161, 2937, 10.1016/j.dam.2013.07.006
M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, Online available at http://www.codetables.de (Accessed on 15.05.15).
Hammons, 1994, The Z4-linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Trans. Inform. Theory, 40, 301, 10.1109/18.312154
Kiermaier, 2011, A Z4-linear code of high minimum Lee distance derived from a hyperoval, Adv. Math. Commun., 5, 275, 10.3934/amc.2011.5.275
Kiermaier, 2013, New ring-linear codes from dualization in projective Hjelmslev geometries, Des. Codes Cryptogr., 66, 39, 10.1007/s10623-012-9650-1
Kim, 2000, A coloring problem on the n-cube, Discrete Appl. Math., 161, 307, 10.1016/S0166-218X(99)00249-8
Ngo, 2002, New bounds on a hypercube coloring problem, Inform. Process. Lett., 84, 265, 10.1016/S0020-0190(02)00301-0
Östergård, 2004, On a hypercube coloring problem, J. Combin. Theory Ser. A, 108, 199, 10.1016/j.jcta.2004.06.010
A. Pavan, P.-J. Wan, S.-R. Tong, D.-Z. Du, A new multihop lightwave network based on the generalized de-Brujin graph, in: Proc. on IEEE INFOCOM, 1996, pp. 498–507.
Skupień, 1995, Some maximum multigraphs and edge/vertex distance colourings, Discuss. Math. Graph Theory, 15, 89, 10.7151/dmgt.1010
Skupień, 2007, BCH codes and distance multi- or fractional colorings in hypercubes asymptotically, Discrete Math., 307, 990, 10.1016/j.disc.2006.04.033
Wan, 1997, Near-optimal conflict free channel set assignments for an optical cluster-based hypercube network, J. Comb. Optim., 1, 179, 10.1023/A:1009759916586
Ziegler, 2001, Coloring Hamming graphs, optimal binary codes, and the 0/1-Borsuk problem in low dimensions, 159