A Review and Study on Ritz Method Admissible Functions with Emphasis on Buckling and Free Vibration of Isotropic and Anisotropic Beams and Plates

Archives of Computational Methods in Engineering - Tập 25 - Trang 785-815 - 2017
Pablo Moreno-García1, José V. Araújo dos Santos2, Hernani Lopes3
1Departamento de Ingeniería Mecánica y Diseño Industrial, Escuela Superior de Ingeniería, Universidad de Cádiz, Cádiz, Spain
2IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
3DEM, ISEP, Instituto Politécnico do Porto, Porto, Portugal

Tóm tắt

The first goal of this work is to present a literature review regarding the use of several sets of admissible functions in the Ritz method. The papers reviewed deal mainly with the analysis of buckling and free vibration of isotropic and anisotropic beams and plates. Theoretically, in order to obtain a correct solution, the set of admissible functions must not violate the essential or geometric boundary conditions and should also be linearly independent and complete. However, in practice, some of the sets of functions proposed in the literature present a bad numerical behavior, namely in terms of convergence, computational time and stability. Thus, a second goal of the present work is to compare the performance of several sets of functions in terms of these three features. To achieve this objective, the free vibration analysis of a fully clamped rectangular plate is carried out using six different sets of functions, along with the study of the convergence of natural frequencies and mode shapes, the computational time and the numerical stability.

Tài liệu tham khảo

Afshari M, Inman DJ (2013) Continuous crack modeling in piezoelectrically driven vibrations of an Euler-Bernoulli beam. J Vib Control 19(3):341–355. doi:10.1177/1077546312437803 Ansari R, Rouhi H (2011) Analytical treatment of the free vibration of single-walled carbon nanotubes based on the nonlocal Flugge shell theory. J Eng Mater Technol 134(1):011008. doi:10.1115/1.4005347 Ansari R, Rouhi H (2012) Nonlocal Flugge shell model for thermal buckling of multi-walled carbon nanotubes with layerwise boundary conditions. J Therm Stress 35(4):326–341. doi:10.1080/01495739.2012.663683 Ansari R, Sahmani S, Rouhi H (2011) Axial buckling analysis of single-walled carbon nanotubes in thermal environments via the Rayleigh-Ritz technique. Comput Mater Sci 50(10):3050–3055. doi:10.1016/j.commatsci.2011.05.027 Ansari R, Sahmani S, Rouhi H (2011) Rayleigh-Ritz axial buckling analysis of single-walled carbon nanotubes with different boundary conditions. Phys Lett A 375(9):1255–1263. doi:10.1016/j.physleta.2011.01.046 Aref AJ, Alampalli S, He Y (2001) Ritz-based static analysis method for fiber reinforced plastic rib core skew bridge superstructure. J Eng Mech-ASCE 127(5):450–458. doi:10.1061/(ASCE)0733-9399(2001) 127:5(450) Arshad SH, Naeem MN, Sultana N, Iqbal Z, Shah AG (2011) Effects of exponential volume fraction law on the natural frequencies of FGM cylindrical shells under various boundary conditions. Arch Appl Mech 81(8):999–1016. doi:10.1007/s00419-010-0460-5 Ashton JE (1969a) Analysis of anisotropic plates II. J Compos Mater 3(3):470–479. doi:10.1177/002199836900300311 Ashton JE (1969b) Natural modes of free-free anisotropic plates. Shock Vib Bull 39(4):93–99 Ashton JE (1970) Anisotropic plate analysis-boundary conditions. J Compos Mater 4(2):162–171. doi:10.1177/002199837000400201 Ashton JE, Anderson JD (1969) The natural modes of vibration of boron-epoxy plates. Shock Vib Bull 39(4):81–91 Ashton JE, Waddoups ME (1969) Analysis of anisotropic plates. J Compos Mater 3(1):148–165. doi:10.1177/002199836900300111 Askari E, Daneshmand F, Amabili M (2011) Coupled vibrations of a partially fluid-filled cylindrical container with an internal body including the effect of free surface waves. J Fluid Struct 27(7):1049–1067. doi:10.1016/j.jfluidstructs.2011.04.010 Bae CH, Kwak MK, Koo JR (2012) Free vibration analysis of a hanged clamped-free cylindrical shell partially submerged in fluid: the effect of external wall, internal shaft, and flat bottom. J Sound Vib 331(17):4072–4092. doi:10.1016/j.jsv.2012.04.020 Bambill DV, Felix DH, Rossit CA (2006) Natural frequencies of thin, rectangular plates with holes or orthotropic “patches” carrying an elastically mounted mass. Int J Solids Struct 43(14–15):4116–4135. doi:10.1016/j.ijsolstr.2005.03.051 Bassily SF, Dickinson SM (1972) Buckling and lateral vibration of rectangular plates subject to inplane loads-A Ritz approach. J Sound Vib 24(2):219–239. doi:10.1016/0022-460X(72)90951-0 Bassily SF, Dickinson SM, (1973) Corrigendum: Buckling and lateral vibration of rectangular plates subject to inplane loads-A Ritz approach: (S. F. Bassily and S. M. Dickinson, (1972) J Sound Vib 24, 219–239). J Sound Vib 29(4):505–508. doi:10.1016/S0022-460X(73)80066-5 Bassily SF, Dickinson SM (1975) On the use of beam functions for problems of plates involving free edges. J Appl Mech 42(4):858–864. doi:10.1115/1.3423720 Bert CW, Mayberry BL (1969) Free vibrations of unsymmetrically laminated anisotropic plates with clamped edges. J Compos Mater 3(2):282–293. doi:10.1177/002199836900300207 Berthelot JM (2006) Damping analysis of laminated beams and plates using the Ritz method. Compos Struct 74(2):186–201. doi:10.1016/j.compstruct.2005.04.031 Berthelot JM, Sefrani Y (2004) Damping analysis of unidirectional glass and Kevlar fibre composites. Compos Sci Technol 64(9):1261–1278. doi:10.1016/j.compscitech.2003.10.003 Bhat RB (1985a) Natural frequencies of rectangular plates using characteristic orthogonal polynomials in Rayleigh-Ritz method. J Sound Vib 102(4):493–499. doi:10.1016/S0022-460X(85)80109-7 Bhat RB (1985) Plate deflections using orthogonal polynomials. J Eng Mech-ASCE 111(11):1301–1309. doi:10.1061/(ASCE)0733-9399(1985) 111:11(1301) Bhat RB (1986) Transverse vibrations of a rotating uniform cantilever beam with tip mass as predicted by using beam characteristic orthogonal polynomials in the Rayleigh-Ritz method. J Sound Vib 105(2):199–210. doi:10.1016/0022-460X(86)90149-5 Bhat RB (1987a) Beam characteristic orthogonal polynomials with fractional power increments. J Sound Vib 112(3):556–558. doi:10.1016/S0022-460X(87)80121-9 Bhat RB (1987b) Flexural vibration of polygonal plates using characteristic orthogonal polynomials in two variables. J Sound Vib 114(1):65–71. doi:10.1016/S0022-460X(87)80234-1 Bhat RB (1987c) Rayleigh-Ritz method with separate deflection expressions for structural segments. J Sound Vib 115(1):174–177. doi:10.1016/0022-460X(87)90500-1 Bhat RB, Laura PAA, Gutierrez RG, Cortinez VH, Sanzi HC (1990) Numerical experiments on the determination of natural frequencies of transverse vibrations of rectangular plates of non-uniform thickness. J Sound Vib 138(2):205–219. doi:10.1016/0022-460X(90)90538-B Blevins RD (1979) Formulas for natural frequency and mode shape. Van Nostrand Reinhold, New York Bose T, Mohanty AR (2014) Detection and monitoring of side crack in a rectangular plate using mobility. J Vib Control. doi:10.1177/1077546314534285 Bose T, Mohanty AR (2015) Sound radiation response of a rectangular plate having a side crack of arbitrary length, orientation, and position. J Vib Acoust 137(2):021,019–021,019, doi:10.1115/1.4029449 Chai GB (1993) Free vibration of rectangular isotropic plates with and without a concentrated mass. Comput Struct 48(3):529–533. doi:10.1016/0045-7949(93)90331-7 Chai GB (1994) Buckling of generally laminated composite plates with various edge support conditions. Compos Struct 29(3):299–310. doi:10.1016/0263-8223(94)90026-4 Chai GB (1995) Frequency analysis of a S-C-S-C plate carrying a concentrated mass. J Sound Vib 179(1):170–177. doi:10.1006/jsvi.1995.0011 Chai GB (1995b) Frequency analysis of rectangular isotropic plates carrying a concentrated mass. Comput Struct 56(1):39–48. doi:10.1016/0045-7949(94)00533-9 Chai GB, Khong PW (1993) The effect of varying the support conditions on the buckling of laminated composite plates. Compos Struct 24(2):99–106. doi:10.1016/0263-8223(93)90031-K Chai GB, Low KH, Lim TM (1995) Tension effects on the natural frequencies of centre-loaded clamped beams. J Sound Vib 181(4):727–736. doi:10.1006/jsvi.1995.0168 Chakraverty S, Bhat RB, Stiharu I (1999) Recent research on vibration of structures using boundary characteristic orthogonal polynomials in the Rayleigh-Ritz method. Shock Vib Dig 31(3):187–194 Cheung KY, Zhou D (1999a) The free vibrations of tapered rectangular plates using a new set of beam functions with the Rayleigh-Ritz method. J Sound Vib 223(5):703–722. doi:10.1006/jsvi.1998.2160 Cheung YK, Zhou D (1999b) Eigenfrequencies of tapered rectangular plates with intermediate line supports. Int J Solids Struct 36(1):143–166. doi:10.1016/S0020-7683(97)00272-2 Cheung YK, Zhou D (1999c) The free vibrations of rectangular composite plates with point-supports using static beam functions. Compos Struct 44(2–3):145–154. doi:10.1016/S0263-8223(98)00122-6 Cheung YK, Zhou D (2000a) Vibrations of moderately thick rectangular plates in terms of a set of static Timoshenko beam functions. Comput Struct 78(6):757–768. doi:10.1016/S0045-7949(00)00058-4 Cheung YK, Zhou D (2000b) Vibrations of rectangular plates with elastic intermediate line-supports and edge constraints. Thin Wall Struct 37(4):305–331. doi:10.1016/S0263-8231(00)00015-X Cheung YK, Zhou D (2001a) Free vibrations of rectangular unsymmetrically laminated composite plates with internal line supports. Comput Struct 79(20–21):1923–1932. doi:10.1016/S0045-7949(01)00096-7 Cheung YK, Zhou D (2001b) Vibration analysis of symmetrically laminated rectangular plates with intermediate line supports. Comput Struct 79(1):33–41. doi:10.1016/S0045-7949(00)00108-5 Cheung YK, Zhou D (2003) Vibration of tapered Mindlin plates in terms of static Timoshenko beam functions. J Sound Vib 260(4):693–709. doi:10.1016/S0022-460X(02)01008-8 Chiba M, Sugimoto T (2003) Vibration characteristics of a cantilever plate with attached spring-mass system. J Sound Vib 260(2):237–263. doi:10.1016/S0022-460X(02)00921-5 Ciancio PM, Rossit CA, Laura PAA (2007) Approximate study of the free vibrations of a cantilever anisotropic plate carrying a concentrated mass. J Sound Vib 302(3):621–628. doi:10.1016/j.jsv.2006.11.027 Courant R (1943) Variational methods for the solution of problems of equilibrium and vibrations. Bull Am Math Soc 49(1):1–23. doi:10.1090/S0002-9904-1943-07818-4 Cupial P (1997) Calculation of the natural frequencies of composite plates by the Rayleigh-Ritz method with orthogonal polynomials. J Sound Vib 201(3):385–387. doi:10.1006/jsvi.1996.0802 Dasgupta A, Huang KH (1997) A layer-wise analysis for free vibrations of thick composite spherical panels. J Compos Mater 31(7):658–671. doi:10.1177/002199839703100702 Deobald LR, Gibson RF (1988) Determination of elastic constants of orthotropic plates by a modal analysis/Rayleigh-Ritz technique. J Sound Vib 124(2):269–283. doi:10.1016/S0022-460X(88)80187-1 Dickinson SM (1978) The buckling and frequency of flexural vibration of rectangular isotropic and orthotropic plates using Rayleigh’s method. J Sound Vib 61(1):1–8. doi:10.1016/0022-460X(78)90036-6 Dickinson SM, Di Blasio A (1986) On the use of orthogonal polynomials in the Rayleigh-Ritz method for the study of the flexural vibration and buckling of isotropic and orthotropic rectangular plates. J Sound Vib 108(1):51–62. doi:10.1016/S0022-460X(86)80310-8 Dickinson SM, Li EKH (1982) On the use of simply supported plate functions in the Rayleigh-Ritz method applied to the flexural vibration of rectangular plates. J Sound Vib 80(2):292–297. doi:10.1016/0022-460X(82)90199-7 Dowell EH (1984) On asymptotic approximations to beam model shapes. J Appl Mech 51(2):439. doi:10.1115/1.3167639 Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocations and surface waves. J Appl Phys 54(9):4703–4710. doi:10.1063/1.332803 Eringen AC, Edelen DGB (1972) On nonlocal elasticity. Int J Eng Sci 10:233–248 Fasana A, Marchesiello S (2001) Rayleigh-Ritz analysis of sandwich beams. J Sound Vib 241(4):643–652. doi:10.1006/jsvi.2000.3311 Felgar RP (1950) Formulas for integrals containing characteristic functions of a vibrating beam. Tech. rep., University of Texas. Bureau of Engineering Research. Circular Frederiksen PS (1995) Single-layer plate theories applied to the flexural vibration of completely free thick laminates. J Sound Vib 186(5):743–759. doi:10.1006/jsvi.1995.0486 Gallego A, Moreno-García P, Casanova CF (2013) Modal analysis of delaminated composite plates using the finite element method and damage detection via combined Ritz/2D-wavelet analysis. J Sound Vib 332(12):2971–2983. doi:10.1016/j.jsv.2013.01.012 Gander M, Kwok F (2012) Chladni figures and the Tacoma bridge: motivating PDE eigenvalue problems via vibrating plates. SIAM Rev 54(3):573–596. doi:10.1137/10081931X Gander M, Wanner G (2012) From Euler, Ritz, and Galerkin to modern computing. SIAM Rev 54(4):627–666. doi:10.1137/100804036 Ganesan N, Engels RC (1992) Hierarchical Bernoulli-Euler beam finite elements. Comput Struct 43(2):297–304. doi:10.1016/0045-7949(92)90146-Q Gartner JR, Cobb EC (1988) Natural frequencies and biplanar response of generalized rotating spindle systems. Robot Cim-Int Manuf 4(1–2):165–174. doi:10.1016/0736-5845(88)90073-7 Gartner JR, Olgac N (1982) Improved numerical computation of uniform beam characteristic values and characteristic functions. J Sound Vib 84(2):481–489. doi:10.1016/S0022-460X(82)80029-1 Gaul L (2014) From Newton’s principia via Lord Rayleigh’s theory of sound to finite elements. In: Stein E (ed) The history of theoretical, material and computational mechanics - mathematics meets mechanics and engineering. Lecture notes in applied mathematics and mechanics, vol 1. Springer, Berlin, pp 385–398. doi:10.1007/978-3-642-39905-3_21 Grossi RO, Bhat RB (1995) Natural frequencies of edge restrained tapered rectangular plates. J Sound Vib 185(2):335–343. doi:10.1006/jsvi.1995.0382 Hearmon RFS (1959) The frequency of flexural vibration of rectangular orthotropic plates with clamped or supported edges. J Appl Mech 26(4):537–540 Hosseini-Hashemi S, Karimi M, Rokni DH (2010) Hydroelastic vibration and buckling of rectangular Mindlin plates on Pasternak foundations under linearly varying in-plane loads. Soil Dyn Earthq Eng 30(12):1487–1499. doi:10.1016/j.soildyn.2010.06.019 Hosseini-Hashemi S, Karimi M, Taher HRD (2010b) Vibration analysis of rectangular Mindlin plates on elastic foundations and vertically in contact with stationary fluid by the Ritz method. Ocean Eng 37(2–3):174–185. doi:10.1016/j.oceaneng.2009.12.001 Hu XX, Sakiyama T, Lim CW, Xiong Y, Matsuda H, Morita C (2004) Vibration of angle-ply laminated plates with twist by Rayleigh-Ritz procedure. Comput Method Appl M 193(9–11):805–823. doi:10.1016/j.cma.2003.08.003 Huang CS, Leissa AW (2009) Vibration analysis of rectangular plates with side cracks via the Ritz method. J Sound Vib 323(3–5):974–988. doi:10.1016/j.jsv.2009.01.018 Huang CS, Leissa AW, Chan CW (2011) Vibrations of rectangular plates with internal cracks or slits. Int J Mech Sci 53(6):436–445. doi:10.1016/j.ijmecsci.2011.03.006 Huang CS, Leissa AW, Li RS (2011b) Accurate vibration analysis of thick, cracked rectangular plates. J Sound Vib 330(9):2079–2093. doi:10.1016/j.jsv.2010.11.007 Huang CS, McGee OG III, Chang MJ (2011) Vibrations of cracked rectangular FGM thick plates. Compos Struct 93(7):1747–1764. doi:10.1016/j.compstruct.2011.01.005 Huang CS, Yang PJ, Chang MJ (2012) Three-dimensional vibration analyses of functionally graded material rectangular plates with through internal cracks. Compos Struct 94(9):2764–2776. doi:10.1016/j.compstruct.2012.04.003 Huang CS, McGee OG III, Wang KP (2013) Three-dimensional vibrations of cracked rectangular parallelepipeds of functionally graded material. Int J Mech Sci 70:1–25. doi:10.1016/j.ijmecsci.2012.05.009 van Hulzen JR, Schitter G, den Hof PMJV, van Eijk J (2012) Dynamics, load balancing, and modal control of piezoelectric tube actuators. Mechatron 22(3):282–294. doi:10.1016/j.mechatronics.2011.10.003 Ilanko S (2009) Comments on “The historical bases of the Rayleigh and Ritz methods”. J Sound Vib 319(1–2):731–733. doi:10.1016/j.jsv.2008.06.001 Ip KH, Tse PC, Lai TC (1998) Material characterization for orthotropic shells using modal analysis and Rayleigh-Ritz models. Compos Part B 29(4):397–409. doi:10.1016/S1359-8368(97)00037-1 Isvandzibaei MR, Jamaluddin H, Raja Hamzah R (2014) Frequency analysis of multiple layered cylindrical shells under lateral pressure with asymmetric boundary conditions. Chinese J Mech Eng 27(1):23–31. doi:10.3901/CJME.2014.01.023 Jeong KH, Kang HS (2013) Free vibration of multiple rectangular plates coupled with a liquid. Int J Mech Sci 74:161–172. doi:10.1016/j.ijmecsci.2013.05.011 Kato Y, Honma T (1998) The Rayleigh-Ritz solution to estimate vibration characteristics of building floors. J Sound Vib 211(2):195–206. doi:10.1006/jsvi.1997.1362 Kim CS, Young PG, Dickinson SM (1990) On the flexural vibration of rectangular plates approached by using simple polynomials in the Rayleigh-Ritz method. J Sound Vib 143(3):379–394. doi:10.1016/0022-460X(90)90730-N Kim YW (2005) Temperature dependent vibration analysis of functionally graded rectangular plates. J Sound Vib 284(3–5):531–549. doi:10.1016/j.jsv.2004.06.043 Kollar LP, Veres IA (2001) Buckling of rectangular orthotropic plates subjected to biaxial normal forces. J Compos Mater 35(7):625–635. doi:10.1177/002199801772662109 Kong S (2013) Size effect on pull-in behavior of electrostatically actuated microbeams based on a modified couple stress theory. Appl Math Model 37(12–13):7481–7488. doi:10.1016/j.apm.2013.02.024 Kwak MK, Koo JR, Bae CH (2011) Free vibration analysis of a hung clamped-free cylindrical shell partially submerged in fluid. J Fluid Struct 27(2):283–296. doi:10.1016/j.jfluidstructs.2010.11.005 Lai TC, Ip KH (1996) Parameter estimation of orthotropic plates by bayesian sensitivity analysis. Compos Struct 34(1):29–42. doi:10.1016/0263-8223(95)00128-X Lam KY, Amrutharaj G (1995) Natural frequencies of rectangular stepped plates using polynomial beam functions with subsectioning. Appl Acoust 44(4):325–340. doi:10.1016/0003-682X(94)00030-Y Lam KY, Chun L (1994) Analysis of clamped laminated plates subjected to conventional blast. Compos Struct 29(3):311–321. doi:10.1016/0263-8223(94)90027-2 Lam KY, Hung KC (1990) Vibration study on plates with stiffened openings using orthogonal polynomials and partitioning method. Comput Struct 37(3):295–301. doi:10.1016/0045-7949(90)90321-R Lam KY, Loy CT (1995) Effects of boundary conditions on frequencies of a multi-layered cylindrical shell. J Sound Vib 188(3):363–384. doi:10.1006/jsvi.1995.0599 Lam KY, Hung KC, Chow ST (1989) Vibration analysis of plates with cutouts by the modified Rayleigh-Ritz method. Appl Acoust 28(1):49–60. doi:10.1016/0003-682X(89)90030-3 Lee D-C, Wang C-S, Lee L-T (2011) The natural frequency of elastic plates with void by Ritz-method. Stud in Math Sci 2(1):36–50. doi:10.3968/j.sms.1923845220120201.009 Lee LT, Lee DC (1997) Free vibration of rectangular plates on elastic point supports with the application of a new type of admissible function. Comput Struct 65(2):149–156. doi:10.1016/S0045-7949(96)00426-9 Leissa AW (1973) The free vibration of rectangular plates. J Sound Vib 31(3):257–293. doi:10.1016/S0022-460X(73)80371-2 Leissa AW (2005) The historical bases of the Rayleigh and Ritz methods. J Sound Vib 287(45):961–978. doi:10.1016/j.jsv.2004.12.021 Leissa AW, Shihada SM (1995) Convergence of the Ritz method. Appl Mech Rev 48(11S):S90–S95. doi:10.1115/1.3005088 Leung AYT (1988) Integration of beam functions. Comput Struct 29(6):1087–1094. doi:10.1016/0045-7949(88)90332-X Leung AYT (1990) Recurrent integration of beam functions. Comput Struct 37(3):277–282. doi:10.1016/0045-7949(90)90319-W Liew KM, Hung KC, Lim MK (1993a) Method of domain decomposition in vibrations of mixed edge anisotropic plates. Int J Solids Struct 30(23):3281–3301. doi:10.1016/0020-7683(93)90114-M Liew KM, Hung KC, Lim MK (1993b) Roles of domain decomposition method in plate vibrations: Treatment of mixed discontinuous periphery boundaries. Int J Mech Sci 35(7):615–632. doi:10.1016/0020-7403(93)90005-F Liew KM, Hung KC, Lim MK (1994) On the use of the domain decomposition method for vibration of symmetric laminates having discontinuities at the same edge. J Sound Vib 178(2):243–264. doi:10.1006/jsvi.1994.1481 Liew KM, Hung KC, Lim MK (1995) Vibration of Mindlin plates using boundary characteristic orthogonal polynomials. J Sound Vib 182(1):77–90. doi:10.1006/jsvi.1995.0183 Lim SP, Senthilnathan NR, Lee KH (1989) Rayleigh-Ritz vibration analysis of thick plates by a simple higher order theory. J Sound Vib 130(1):163–166. doi:10.1016/0022-460X(89)90527-0 Rayleigh L (1911) XXIV. On the calculation of Chladni’s figures for a square plate. Philos Mag 22(128):225–229. doi:10.1080/14786440808637121 Low KH, Chai GB, Ng CK (1993a) Experimental and analytical study of the frequencies of an S-C-S-C plate carrying a concentrated mass. J Vib Acoust 115(4):391–396. doi:10.1115/1.2930362 Low KH, Lim TM, Chai GB (1993b) Experimental and analytical investigations of vibration frequencies for centre-loaded beams. Comput Struct 48(6):1157–1162. doi:10.1016/0045-7949(93)90448-M Low KH, Chai GB, Tan GS (1997) A comparative study of vibrating loaded plates between the Rayleigh-Ritz and experimental methods. J Sound Vib 199(2):285–297. doi:10.1006/jsvi.1996.0633 Low KH, Chai GB, Lim TM, Sue SC (1998) Comparisons of experimental and theoretical frequencies for rectangular plates with various boundary conditions and added masses. Int J Mech Sci 40(11):1119–1131. doi:10.1016/S0020-7403(98)00013-7 Loy CT, Lam KY (1997) Vibration of cylindrical shells with ring support. Int J Mech Sci 39(4):455–471. doi:10.1016/S0020-7403(96)00035-5 Maheri MR, Adams RD (2003) Modal vibration damping of anisotropic FRP laminates using the Rayleigh-Ritz energy minimization scheme. J Sound Vib 259:17–29. doi:10.1006/jsvi.2002.5151 Meleshko VV (1997) Bending of an elastic rectangular clamped plate: exact versus ‘engineering’ solutions. J Elast 48(1):1–50. doi:10.1023/A:1007472709175 Messina A, Soldatos KP (1999) Ritz-type dynamic analysis of cross-ply laminated circular cylinders subjected to different boundary conditions. J Sound Vib 227(4):749–768. doi:10.1006/jsvi.1999.2347 Morales CA, Ramírez JF (2002) Further simplest-expression integrals involving beam eigenfunctions and derivatives. J Sound Vib 253(2):518–522. doi:10.1006/jsvi.2001.4011 Moreno-García P (2012) Simulación y ensayos de vibraciones en placas de material compuesto de fibra de carbono y detección de daño mediante la respuesta en frecuencia y la transformada wavelet. PhD thesis, Universidad de Granada, Spain. http://hdl.handle.net/10481/23283 (in Spanish) Moreno-García P, Castro E, Romo-Melo L, Gallego A, Roldán A (2012) Vibration tests in CFRP plates for damage detection via non-parametric signal analysis. Shock Vib 19(5):857–865. doi:10.1155/2012/385835 Moreno-García P, Lopes H, Araújo dos Santos JV, Maia NMM (2012b) Damage localisation in composite laminated plates using higher order spatial derivatives. In: Topping B (ed) Proceedings of the eleventh international conference on computational structures technology. Civil-Comp Press, Stirlingshire, UK. doi:10.4203/ccp.99.75 Moreno-García P, Araújo dos Santos JV, Lopes H (2014) A new technique to optimize the use of mode shape derivatives to localize damage in laminated composite plates. Compos Struct 108:548–554. doi:10.1016/j.compstruct.2013.09.050 Moreno-García P, Lopes H, Araújo dos Santos JV (2015) Application of higher order finite differences to damage localization in laminated composite plates. Compos Struct. doi:10.1016/j.compstruct.2015.08.011 Muthukumaran P, Bhat R, Stiharu I (1999) Boundary conditioning technique for structural tuning. J Sound Vib 220(5):847–859. doi:10.1006/jsvi.1998.1991 Muthukumaran P, Demirli K, Stiharu I, Bhat R (2000) Boundary conditioning for structural tuning using fuzzy logic approach. Comput Struct 74(5):547–557. doi:10.1016/S0045-7949(99)00063-2 Nallim LG, Grossi RO (2003) On the use of orthogonal polynomials in the study of anisotropic plates. J Sound Vib 264(5):1201–1207. doi:10.1016/S0022-460X(02)01523-7 Nallim LG, Oller S (2008) An analytical-numerical approach to simulate the dynamic behaviour of arbitrarily laminated composite plates. Compos Struct 85(4):311–325. doi:10.1016/j.compstruct.2007.10.031 Nallim LG, Martinez SO, Grossi RO (2005) Statical and dynamical behaviour of thin fibre reinforced composite laminates with different shapes. Comput Method Appl Mech Eng 194(17):1797–1822. doi:10.1016/j.cma.2004.06.009 Oosterhout G, van der Hoogt P, Spiering R (1995) Accurate calculation methods for natural frequencies of plates with special attention to the higher modes. J Sound Vib 183(1):33–47. doi:10.1006/jsvi.1995.0237 Pandey MD, Sherbourne AN (1991) Buckling of anisotropic composite plates under stress gradient. J Eng Mech-ASCE 117(2):260–275. doi:10.1061/(ASCE)0733-9399(1991) 117:2(260) Pandey MD, Sherbourne AN (1993) Stability analysis of inhomogeneous, fibrous composite plates. Int J Solids Struct 30(1):37–60. doi:10.1016/0020-7683(93)90131-P Pao YC, Peterson KA (1988) Contour-plot simulation of vibrational and buckling mode shapes of composite plates. J Compos Mater 22(10):935–954. doi:10.1177/002199838802201003 Parashar SK, Kumar A (2015) Three-dimensional analytical modeling of vibration behavior of piezoceramic cylindrical shells. Arch Appl Mech 85(5):641–656. doi:10.1007/s00419-014-0977-0 Pirnat M, Cepon G, Boltezar M (2014) Structural-acoustic model of a rectangular plate-cavity system with an attached distributed mass and internal sound source: theory and experiment. J Sound Vib 333(7):2003–2018. doi:10.1016/j.jsv.2013.11.044 Plunkett R (1963) Natural frequencies of uniform and non-uniform rectangular cantilever plates. J Mech Eng Sci 5(2):146–156. doi:10.1243/JMES_JOUR_1963_005_020_02 Rango RF, Bellomo FJ, Nallim LG (2015) A variational Ritz formulation for vibration analysis of thick quadrilateral laminated plates. Int J Mech Sci 104:60–74. doi:10.1016/j.ijmecsci.2015.09.018 Reddy JN (1984) A simple higher-order theory for laminated composite plates. J Appl Mech 51(4):745–752. doi:10.1115/1.3167719 Rinaldi G, Packirisamy M, Stiharu I (2006) Boundary characterization of microstructures through thermo-mechanical testing. J Micromech Microeng 16(3):549. doi:10.1088/0960-1317/16/3/010 Rinaldi G, Packirisamy M, Stiharu I (2007) Quantitative boundary support characterization for cantilever MEMS. Sensors 7(10):2062–2079. doi:10.3390/s7102062 Rinaldi G, Packirisamy M, Stiharu I (2008) Boundary characterization of MEMS structures through electro-mechanical testing. Sensor Actuat A-Phys 143(2):415–422. doi:10.1016/j.sna.2007.08.032 Ritz W (1909a) Theorie der transversalschwingungen einer quadratische platte mit freien rändern. Ann Phys-Leipzig 333(4):737–786. doi:10.1002/andp.19093330403 Ritz W (1909) Über eine neue methode zur lösung gewisser variationsprobleme der mathematischen physik. J Reine Angew Math 135:1–61. doi:10.1515/crll.1909.135.1 Rouhi H, Bazdid-Vahdati M, Ansari R (2015) Rayleigh-Ritz vibrational analysis of multiwalled carbon nanotubes based on the nonlocal Flugge shell theory. J Compos 2015:11. doi:10.1155/2015/750392 Araújo dos Santos JV, Reddy JN (2012) Free vibration and buckling analysis of beams with a modified couple-stress theory. Int J Appl Mech 4(3):1250,026. doi:10.1142/S1758825112500263 Savoye P (2011) On the benefits of exposing mathematics majors to the Rayleigh-Ritz procedure. PRIMUS 21(6):554–566. doi:10.1080/10511970903474455 Sharma CB (1978) Calculation of integrals involving characteristic beam functions. J Sound Vib 56(4):475–480. doi:10.1016/0022-460X(78)90289-4 Smith ST, Bradford MA, Oehlers DJ (1999) Numerical convergence of simple and orthogonal polynomials for the unilateral plate buckling problem using the Rayleigh-Ritz method. Int J Numer Meth Eng 44(11):1685–1707 Soldatos KP, Messina A (1998) Vibration studies of cross-ply laminated shear deformable circular cylinders on the basis of orthogonal polynomials. J Sound Vib 218(2):219–243. doi:10.1006/jsvi.1998.1769 Soldatos KP, Messina A (2001) The influence of boundary conditions and transverse shear on the vibration of angle-ply laminated plates, circular cylinders and cylindrical panels. Comput Method Appl Mech Eng 190(18–19):2385–2409. doi:10.1016/S0045-7825(00)00242-5 Song X, Han Q, Zhai J (2015) Vibration analyses of symmetrically laminated composite cylindrical shells with arbitrary boundaries conditions via rayleigh-ritz method. Compos Struct 134:820–830. doi:10.1016/j.compstruct.2015.08.134 Song X, Zhai J, Chen Y, Han Q (2015) Traveling wave analysis of rotating cross-ply laminated cylindrical shells with arbitrary boundaries conditions via rayleigh-ritz method. Compos Struct 133:1101–1115. doi:10.1016/j.compstruct.2015.08.015 Sun S, Cao D, Han Q (2013) Vibration studies of rotating cylindrical shells with arbitrary edges using characteristic orthogonal polynomials in the rayleigh-ritz method. Int J Mech Sci 68:180–189. doi:10.1016/j.ijmecsci.2013.01.013 Timoshenko S (1937) Vibration problems in engineering, 2nd edn. D. Van Nostrand Company Inc, New York Timoshenko S, Woinowsky-Krieger S (1959) Theory of plates and shells. McGraw-Hill, Auckland Warburton GB (1954) The vibration of rectangular plates. P I Mech Eng 168(1):371–384. doi:10.1243/PIME_PROC_1954_168_040_02 Warburton GB, Edney SL (1984) Vibrations of rectangular plates with elastically restrained edges. J Sound Vib 95(4):537–552. doi:10.1016/0022-460X(84)90236-0 Williamson F Jr (1980) Richard Courant and the finite element method: a further look. Hist Math 7(4):369–378. doi:10.1016/0315-0860(80)90001-4 Yang F, Chong ACM, Lam DCC, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39(10):2731–2743. doi:10.1016/S0020-7683(02)00152-X Yoon H, Youn BD, Kim HS (2016) Kirchhoff plate theory-based electromechanically-coupled analytical model considering inertia and stiffness effects of a surface-bonded piezoelectric patch. Smart Mater Struct 25(2):025,017. doi:10.1088/0964-1726/25/2/025017 Young D (1950) Vibration of rectangular plates by the Ritz method. J Appl Mech 17(4):448–453 Young D, Felgar RP (1949) Tables of characteristic functions representing normal modes of vibration of a beam. Tech. rep., Engineering Research Series, No.44, University of Texas, Austin, Texas. http://hdl.handle.net/2152/6001 Young PG (2000) Application of a three-dimensional shell theory to the free vibration of shells arbitrarily deep in one direction. J Sound Vib 238(2):257–269. doi:10.1006/jsvi.2000.3103 Young PG, Dickinson SM (1993) On the free flexural vibration of rectangular plates with straight or curved internal line supports. J Sound Vib 162(1):123–135. doi:10.1006/jsvi.1993.1106 Zhou D (1994) The application of a type of new admissible function to the vibration of rectangular plates. Comput Struct 52(2):199–203. doi:10.1016/0045-7949(94)90272-0 Zhou D (1995) Natural frequencies of elastically restrained rectangular plates using a set of static beam functions in the Rayleigh-Ritz method. Comput Struct 57(4):731–735. doi:10.1016/0045-7949(95)00066-P Zhou D (1996) Natural frequencies of rectangular plates using a set of static beam functions in Rayleigh-Ritz method. J Sound Vib 189(1):81–87. doi:10.1006/jsvi.1996.0006 Zhou D (2001) Vibrations of Mindlin rectangular plates with elastically restrained edges using static Timoshenko beam functions with the Rayleigh-Ritz method. Int J Solids Struct 38(32–33):5565–5580. doi:10.1016/S0020-7683(00)00384-X Zhou D (2002) Vibrations of point-supported rectangular plates with variable thickness using a set of static tapered beam functions. Int J Mech Sci 44(1):149–164. doi:10.1016/S0020-7403(01)00081-9 Zhou D, Cheung YK (2000a) The free vibration of a type of tapered beams. Comput Method Appl M 188(1–3):203–216. doi:10.1016/S0045-7825(99)00148-6 Zhou D, Cheung YK (2000b) Vibrations of tapered Timoshenko beams in terms of static Timoshenko beam functions. J Appl Mech 68(4):596–602. doi:10.1115/1.1357164 Zhou D, Lo SH, Au FTK, Cheung YK (2002) Vibration analysis of rectangular Mindlin plates with internal line supports using static Timoshenko beam functions. Int J Mech Sci 44(12):2503–2522. doi:10.1016/S0020-7403(02)00188-1