Orders of automorphisms of smooth plane curves for the automorphism groups to be cyclic
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bars, F.: On the automorphisms groups of genus 3 curves. Surv. Math. Sci. 2(2), 83–124 (2012)
Badr, E.; Bars, F.: Automorphism groups of non-singular plane curves of degree 5. Commun. Algebra 44, 4327–4340 (2016)
Badr, E.; Bars, F.: Non-singular plane curves with an element of "large" order in its automorphism group. Int. J. Algebra Comput. 26, 399–434 (2016)
Blichfeldt, H.: Finite Collineation Groups: With an Introduction to the Theory of Groups of Operators and Substitution Groups. Univ. of Chicago Press, Chicago (1917)
Fukasawa, S.; Miura, K.; Takahashi, T.: Quasi-Galois points, I: automorphism groups of plane curves. Tohoku Math. J. (2) 71(4), 487–494 (2019)
Harui, T.; Miura, K.; Ohbuchi, A.: Automorphism group of plane curve computed by Galois points, II. Proc. Jpn. Acad. Ser. A Math. Sci. 94(6), 59–63 (2018)
Harui, T.; Kato, T.; Komeda, J.; Ohbuchi, A.: Quotient curves of smooth plane curves with automorphisms. Kodai Math. J. 33(1), 164–172 (2010)
Hayashi, T.: Smooth plane curves with freely acting finite groups, Vietnam. J. Math. https://doi.org/10.1007/s10013-020-00398-z
Hayashi, T.: Linear automorphisms of hypersurfaces giving Galois points. arXiv:2101.04797
Henn, P.: Die Automorphismengruppen dar algebraischen Functionenkorper vom Geschlecht 3. Inagural-dissertation, Heidelberg (1976).
Komeda, J.; Takahashi, T.: Relating Galois points to weak Galois Weierstrass points through double coverings of curves. J. Korean Math. Soc. 54(1), 69–86 (2017)
Komeda, J.; Takahashi, T.: Galois Weierstrass points whose Weierstrass semigroups are generated by two elements. arXiv:1703.09416
Kuribayashi, A.; Komiya, K.: On Weierstrass points of non-hyperelliptic compact Riemann surfaces of genus three. Hiroshima Math. J. 7, 743–786 (1977)
Miura, K.; Ohbuchi, A.: Automorphism group of plane curve computed by Galois points. Beitr. Algebra Geom. 56(2), 695–702 (2015)
Miura, K.; Yoshihara, H.: Field theory for function fields of plane quartic curves. J. Algebra 226, 283–294 (2000)
Namba, M.: Geometry of Projective Algebraic Curves. Marcel Dekker, New York (1984)
Pambianco, F.: Characterization of the Fermat curve as the most symmetric nonsingular algebraic plane curve. Math. Z 277, 975–993 (2014)