Fundamentals of cDNA microarray data analysis
Tài liệu tham khảo
Leung, 2002, Microarray software review
Box, 1978
Churchill, 2002, Fundamentals of experimental design for cDNA microarrays, Nat. Genet., 32, 490, 10.1038/ng1031
Yang, 2002, Design issues for cDNA microarray experiments, Nat. Rev. Genet., 3, 579, 10.1038/nrg863
Simon, 2003, Experimental design of DNA microarray experiments, Biotechniques, S16, 10.2144/mar03simon
Perou, 2001, Show me the data!, Nat. Genet., 29, 373, 10.1038/ng1201-373
Brazma, 2001, Minimum information about a microarray experiment (MIAME)-toward standards for microarray data, Nat. Genet., 29, 365, 10.1038/ng1201-365
2002, Microarray standards at last, Nature, 419, 323, 10.1038/419323a
Yang, 2001, Analysis of cDNA microarray images, Brief. Bioinform., 2, 341, 10.1093/bib/2.4.341
Jain, 2002, Fully automatic quantification of microarray image data, Genome Res., 12, 325, 10.1101/gr.210902
Quackenbush, 2002, Microarray data normalization and transformation, Nat. Genet., 32, 496, 10.1038/ng1032
Lee, 2002, Control genes and variability: absence of ubiquitous reference transcripts in diverse mammalian expression studies, Genome Res., 12, 292, 10.1101/gr.217802
Novak, 2002, Characterization of variability in large-scale gene expression data: implications for study design, Genomics, 79, 104, 10.1006/geno.2001.6675
Pritchard, 2001, Project normal: defining normal variance in mouse gene expression, Proc. Natl. Acad. Sci. U. S. A., 98, 13266, 10.1073/pnas.221465998
Nadon, 2002, Statistical issues with microarrays: processing and analysis, Trends Genet., 18, 265, 10.1016/S0168-9525(02)02665-3
Lee, 2000, Importance of replication in microarray gene expression studies: statistical methods and evidence from repetitive cDNA hybridizations, Proc. Natl. Acad. Sci. U. S. A., 97, 9834, 10.1073/pnas.97.18.9834
Lönnstedt, 2002, Replicated Microarray Data, Stat. Sinica, 12, 31
Storey, 2003, SAM thresholding and false discovery rates for detecting differential gene expression in DNA microarrays
Kerr, 2000, Analysis of variance for gene expression microarray data, J. Comput. Biol., 7, 819, 10.1089/10665270050514954
Long, 2001, Improved statistical inference from DNA microarray data using analysis of variance and a Bayesian statistical framework. Analysis of global gene expression in Escherichia coli K12, J. Biol. Chem., 276, 19937, 10.1074/jbc.M010192200
Baldi, 2001, A Bayesian framework for the analysis of microarray expression data: regularized t test and statistical inferences of gene changes, Bioinformatics, 17, 509, 10.1093/bioinformatics/17.6.509
Wu, 2001, Analysing gene expression data from DNA microarrays to identify candidate genes, J. Pathol., 195, 53, 10.1002/1096-9896(200109)195:1<53::AID-PATH891>3.0.CO;2-H
Dudoit, 2002, Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments, Stat. Sinica, 12, 111
Chuaqui, 2002, Post-analysis follow-up and validation of microarray experiments, Nat. Genet., 32, 509, 10.1038/ng1034
Reiner, 2003, Identifying differentially expressed genes using false discovery rate controlling procedures, Bioinformatics, 19, 368, 10.1093/bioinformatics/btf877
Raychaudhuri, 2000, Principal components analysis to summarize microarray experiments: application to sporulation time series, Pac. Symp. Biocomput., 455
Alter, 2000, Singular value decomposition for genome-wide expression data processing and modeling, Proc. Natl. Acad. Sci. U. S. A., 97, 10101, 10.1073/pnas.97.18.10101
Eisen, 1998, Cluster analysis and display of genome-wide expression patterns, Proc. Natl. Acad. Sci. U. S. A., 95, 14863, 10.1073/pnas.95.25.14863
Tavazoie, 1999, Systematic determination of genetic network architecture, Nat. Genet., 22, 281, 10.1038/10343
Tamayo, 1999, Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation, Proc. Natl. Acad. Sci. U. S. A., 96, 2907, 10.1073/pnas.96.6.2907
Quackenbush, 2001, Computational analysis of microarray data, Nat. Rev. Genet., 2, 418, 10.1038/35076576
Sherlock, 2001, Analysis of large-scale gene expression data, Brief. Bioinform., 2, 350, 10.1093/bib/2.4.350
Valafar, 2002, Pattern recognition techniques in microarray data analysis: a survey, Ann. N. Y. Acad. Sci., 980, 41, 10.1111/j.1749-6632.2002.tb04888.x
Pomeroy, 2002, Prediction of central nervous system embryonal tumour outcome based on gene expression, Nature, 415, 436, 10.1038/415436a
Shipp, 2002, Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning, Nat. Med., 8, 68, 10.1038/nm0102-68
Khan, 2001, Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks, Nat. Med., 7, 673, 10.1038/89044
Brown, 2000, Knowledge-based analysis of microarray gene expression data by using support vector machines, Proc. Natl. Acad. Sci. U. S. A., 97, 262, 10.1073/pnas.97.1.262
Vohradsky, 2001, Neural network model of gene expression, FASEB J., 15, 846, 10.1096/fj.00-0361com
Theilhaber, 2002, Finding genes in the C2C12 osteogenic pathway by k-nearest-neighbor classification of expression data, Genome Res., 12, 165, 10.1101/gr.182601
Ben-Dor, 2000, Tissue classification with gene expression profiles, J. Comput. Biol., 7, 559, 10.1089/106652700750050943
Pilpel, 2001, Identifying regulatory networks by combinatorial analysis of promoter elements, Nat. Genet., 29, 153, 10.1038/ng724
Hughes, 2000, Functional discovery via a compendium of expression profiles, Cell, 102, 109, 10.1016/S0092-8674(00)00015-5
Tavazoie, 1999, Systematic determination of genetic network architecture, Nat. Genet., 22, 281, 10.1038/10343
Liang, 1998, Reveal, a general reverse engineering algorithm for inference of genetic network architectures, Pac. Symp. Biocomput., 18
Akutsu, 2000, Algorithms for identifying Boolean networks and related biological networks based on matrix multiplication and fingerprint function, J. Comput. Biol., 7, 331, 10.1089/106652700750050817
Maki, 2001, Development of a system for the inference of large scale genetic networks, Pac. Symp. Biocomput., 446
Friedman, 2000, Using Bayesian networks to analyze expression data, J. Comput. Biol., 7, 601, 10.1089/106652700750050961
Hartemink, 2001, Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks, Pac. Symp. Biocomput., 422
de Jong, 2002, Modeling and simulation of genetic regulatory systems: a literature review, J. Comput. Biol., 9, 67, 10.1089/10665270252833208
D'haeseleer, 2000, Genetic network inference: from co-expression clustering to reverse engineering, Bioinformatics, 16, 707, 10.1093/bioinformatics/16.8.707
Grosu, 2002, Pathway Processor: a tool for integrating whole-genome expression results into metabolic networks, Genome Res., 12, 1121, 10.1101/gr.226602
Schena, 1995, Quantitative monitoring of gene expression patterns with a complementary DNA microarray, Science, 270, 467, 10.1126/science.270.5235.467
Lipshutz, 1999, High density synthetic oligonucleotide arrays, Nat. Genet., 21, 20, 10.1038/4447
Zhou, 2003, Algorithms for high-density oligonucleotide array, Curr. Opin. Drug Discov. Devel., 6, 339
Schadt, 2001, Feature extraction and normalization algorithms for high-density oligonucleotide gene expression array data, J. Cell. Biochem., 37, 120, 10.1002/jcb.10073
Schadt, 2000, Analyzing high-density oligonucleotide gene expression array data, J. Cell. Biochem., 80, 192, 10.1002/1097-4644(20010201)80:2<192::AID-JCB50>3.0.CO;2-W
Sasik, 2002, Statistical analysis of high-density oligonucleotide arrays: a multiplicative noise model, Bioinformatics, 18, 1633, 10.1093/bioinformatics/18.12.1633
Li, 2001, Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection, Proc. Natl. Acad. Sci. U. S. A., 98, 31, 10.1073/pnas.011404098