Stochastic relaxation of nonlinear soil moisture ocean salinity (SMOS) soil moisture retrieval errors with maximal Lyapunov exponent optimization

Springer Science and Business Media LLC - Tập 95 - Trang 653-667 - 2018
Ju Hyoung Lee1, Choon Ki Ahn2
1School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, Republic of Korea
2School of Electrical Engineering, Korea University, Seoul, Republic of Korea

Tóm tắt

Stochastic systems have received substantial attention in many disciplines ranging from various ensemble systems such as ensemble prediction system, or ensemble Kalman filter to stochastic retrievals reducing systematic errors in satellite-retrieved cloud, rainfall, or soil moisture data. However, there were few fundamental explanations of why and how the stochastic approach reduces systematic errors. We discuss how to non-locally optimize stochastic retrievals and to alleviate nonlinear error propagations of the deterministic Soil moisture ocean salinity (SMOS) soil moisture retrievals. By near-zero maximal Lyapunov exponents and rank probability skill score, the retrieval ensembles are optimized for bias correction in a computationally effective way. It is found that the diverse ensembles achieve better representativeness and structural stability than the ensembles from the majority. This stochastic property is important for effective bias correction. It is suggested that this stochastic approach independently resolves SMOS dry biases without relying on a local standard of root mean square errors from the field measurements or a relative comparison with reference data. Due to flexibility and non-determinism of surface heterogeneity this approach has a potential as a global frame.

Tài liệu tham khảo

Allen, P.B., Naney, J.W.: Hydrology of the little Washita River Watershed, Oklahoma, data and analyses. ARS-90. USDA-ARS_NAWQL, Durant. http://www.ars.usda.gov/SP2UserFiles/Place/30700510/ars-90.pdf (1991). Accessed 15 Mar 2016 Al Bitar, A., Leroux, D., Kerr, Y.H., Merlin, O., Richaume, P., Sahoo, A., Wood, E.F.: Evaluation of SMOS soil moisture products over continental U.S. using the SCAN/SNOTEL network. IEEE Trans. Geosci. Remote Sens. 50(5), 1572–1586 (2012). https://doi.org/10.1109/TGRS.2012.2186581 Al-Yaari, A., Wigneron, J.-P., Ducharne, A., Kerr, Y.H., Wagner, W., De Lannoy, G., Reichle, R., Al Bitar, A., Dorigo, W., Richaume, P., Mialon, A.: Global-scale comparison of passive (SMOS) and active (ASCAT) satellite based microwave soil moisture retrievals with soil moisture simulations (MERRA-Land). Remote Sens. Environ. 152, 614–626 (2014). https://doi.org/10.1016/j.rse.2014.07.013 Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999) Bircher, S., Skou, N., Kerr, Y.H.: Validation of SMOS L1C and L2 products and important parameters of the retrieval algorithm in the Skjern River Catchment, Western Denmark. IEEE Trans. Geosci. Remote Sens. 51(5), 2969–2985 (2013). https://doi.org/10.1109/TGRS.2012.2215041 Crow, W.T.: An observing system simulation experiment for hydros radiometer-only soil moisture products. IEEE Trans. Geosci. Remote Sens. 43(6), 1289–1303 (2005). https://doi.org/10.1109/TGRS.2005.845645 Crow, W.T., Berg A.A., Cosh M.H., Loew A., Mohanty B. P., Panciera R., de Rosnay P., Ryu D., Walker J. P.: Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products. Rev. Geophys. 50, RG2002 (2012). https://doi.org/10.1029/2011RG000372 dall’Amico, T., Schlenz, F., Loew, A., Mauser, W.: First results of SMOS soil moisture validation in the upper Danube catchment. IEEE Trans. Geosci. Remote Sens. 50(5), 1507–1516 (2012). https://doi.org/10.1109/TGRS.2011.2171496 De Rosnay, P., Muñoz Sabater, J., Drusch, M., Albergel, C., Balsamo, G., Boussetta, S., Isaksen, L., Thépaut, J.-N.: Bias correction for SMOS data assimilation in the ECMWF numerical weather prediction system. In: Proceedings of the ESA Living Planet Symposium, Edinburgh, 9–13 Sep 2013 (2013) De Lannoy, G.J.M., Houser, P.R., Pauwels, V.R.N., Verhoest, N.E.C.: Assessment of model uncertainty for soil moisture through ensemble verification. J. Geophys. Res. 111, D10101 (2006). https://doi.org/10.1029/2005JD006367 De Keyser, E., Vernieuwe, H., Lievens, H., Álvarez-Mozos, J., De Baets, B., Verhoest, N.E.C.: Assessment of SAR-retrieved soil moisture uncertainty induced by uncertainty on modeled soil surface roughness. Int. J. Appl. Earth Obs. Geoinform. 18, 176–182 (2012). https://doi.org/10.1016/j.jag.2012.01.017 de Jeu, R.A.M., Wagner, W., Holmes, T.R.H.: Global soil moisture patterns observed by space borne microwave radiometers and scatterometers. Surv. Geophys. 29, 399 (2008). https://doi.org/10.1007/s10712-008-9044-0 Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M.A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A.C., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A.J., Haimberger, L., Healy, S.B., Hersbach, H., Hólm, E.V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A.P., Monge-Sanz, B.M., Morcrette, J., Park, B., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J., Vitart, F.: The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011). https://doi.org/10.1002/qj.828 Dhanya, C.T., Nagesh Kumar, D.: Nonlinear ensemble prediction of chaotic daily rainfall. Adv. Water Resour. 33(3), 327–347 (2010). https://doi.org/10.1016/j.advwatres.2010.01.001 Dogusgen (Erbas), C., Hornbuckle, B.K.: A non-linear relationship between terrestrial microwave emission at 1.4 GHz and soil moisture caused by ponding of water. Remote Sens. Lett. 6(3), 238–246 (2015). https://doi.org/10.1080/2150704X.2015.1029088 Ding, R., Li, J.: Nonlinear finite-time Lyapunov exponent and predictability. Phys. Lett. A 364(5), 396–400 (2007). https://doi.org/10.1016/j.physleta.2006.11.094 Entekhabi, D., Yueh, S., O’Neill, P., Kellogg, K.: SMAP Handbook. JPL Publication JPL 400-1567, Jet Propulsion Laboratory, Pasadena (2014) Entekhabi, D., Reichle, R.H., Koster, R.D., Crow, W.T.: Performance metrics for soil moisture retrievals and application requirements. J. Hydrometeorol. 11, 832–840 (2010). https://doi.org/10.1175/2010JHM1223.1 Farmer, J.D., Sidorowich, J.J.: Predicting chaotic time series. Phys. Rev. Lett. 59, 845–8 (1987) Faramin, M., Ataei, M.: Chaotic attitude analysis of a satellite via Lyapunov exponents and its robust nonlinear control subject to disturbances and uncertainties. Nonlinear Dyn. 83, 361 (2016). https://doi.org/10.1007/s11071-015-2333-5 Forrester, P.J.: Asymptotics of finite system Lyapunov exponents for some random matrix ensembles. J. Phys. A Math. Theor. 48, 215205 (2015) Gauss, C.F.: Theoria motvs corporvm coelestivm in sectionibvs conicis Solem ambientivm [Theory of the Motion of the Heavenly Bodies Moving about the Sun in Conic Sections] (1809) Guegan, D., Leroux, J.: Local Lyapunov exponents. A new way to predict chaotic systems. In: Skiadas, C.H., Dimotikalis, I., Skiadas, C. (eds.) Topics on Chaotic Systems: Selected Papers from CHAOS 2008, International Conference. World Scientific Publishing, pp. 158–185 (2009) Grassberger, P., Procaccia, I.: Measuring the strangeness of strange attractors. Physica D 9, 189–208 (1983a) Grassberger, P., Procaccia, I.: Estimation of the Kolmogorov entropy from a chaotic signal. Phys. Rev. A 28, 2591–3 (1983b) Godina-Nava, J.J., Rodríguez Segura, M.A., Vázquez Coutiño, G.A., Serrano Luna, G., Carreto García, S.: Fundementals of physics. In: Moran-Lopez, J.L. (ed.) Evolution of Turbulence, vol. 3. Universality in Chaos, Eolss Publishers Co. Ltd./UNESCO, Oxford (2009) Hald, A.: Galileo’s statistical analysis of astronomical observation. Int. Stat. Rev. 54(2), 211–220 (1986) Holmes, T.R.H., Drusch, M., Wigneron, J.P., de Jeu, R.A.M.: A global simulation of microwave emission: error structures based on output from ECMWF’s operational integrated forecast system. IEEE Trans. Geosci. Remote Sens. 46, 846–856 (2008) Hulme, H.R., Symms, L.S.T.: The law of error and the combination of observations. Mon. Not. R. Astron. Soc. 99, 642 (1939) Jackson, T., O’Neill, P., Njoku, E., Chan, S., Bindlish, R.: Soil Moisture Active Passive (SMAP) Project Calibration and Validation for the L2/3_SM_P, Beta-Release Data Products, NASA JPL, JPL D-93981 (2015) Jollifee, I.T., Stephenson, D.B.: Forecast verification. A practitioner’s guide in atmospheric science. Wiley, New York (2003) Just, W., Kantz, H., Rödenbeck, C., Helm, M.: Stochastic modelling: replacing fast degrees of freedom by noise. J. Phys. A Math. Gen. 34, 3199 (2001) Kantz, H.: A robust method to estimate the maximal Lyapunov exponent of a time series. Phys. Lett. A 185, 77–87 (1994) Kafatos, M., Nadeau, R.: The Conscious Universe: Parts and Wholes in Physical Reality. Springer, New York (2000) Kennel, M.B., Brown, R., Abarbanel, H.D.I.: Determining embedding dimension for phase space reconstruction using a geometric method. Phys. Rev. A 45, 3403–11 (1992) Kornelsen, K.C., Coulibaly, P.: Advances in soil moisture retrieval from synthetic aperture radar and hydrological applications. J. Hydrol. 476, 460–489 (2013). https://doi.org/10.1016/j.jhydrol.2012.10.044 Kim, S.B., Tsang, L., Johnson, J.T., Huang, S., van Zyl, J.J., Njoku, E.G.: Soil moisture retrieval using time-series radar observations over bare surfaces. IEEE Trans. Geosci. Remote Sens. 50(5), 1853–1863 (2012). https://doi.org/10.1109/TGRS.2011.2169454 Kerr, Y.H., Waldteufel, P., Richaume, P., Wigneron, J.-P., Ferrazzoli, P., Mahmoodi, A., Al Bitar, A., Cabot, F., Gruhier, C., Juglea, S.E., et al.: The SMOS soil moisture retrieval algorithm. IEEE Trans. Geosci. Remote Sens. 50, 1384–1403 (2012) Kerr, Y.H., Waldteufel, P., Richaume, P., Ferrazzoli, P., Wigneron, J.-P.: SMOS LEVEL 2 Processor Soil Moisture Algorithm Theoretical Basis Document (ATBD) v1.3h; SM-ESL (CBSA), Toulouse, p. 141 (2013) Lee, J.H.: Sequential ensembles tolerant to synthetic aperture radar (SAR) soil moisture retrieval errors. Geosciences 6, 19 (2016) Lee, J.H., Pellarin, T., Kerr, Y.H.: Inversion of soil hydraulic properties from the DEnKF analysis of SMOS soil moisture over West Africa. Agric. For. Meteorol. 188, 76–88 (2014). https://doi.org/10.1016/j.agrformet.2013.12.009 Lee, J.H., Pellarin, T., Kerr, Y.H.: EnOI optimization for SMOS soil moisture over West Africa. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(4), 1821–1829 (2015). https://doi.org/10.1109/JSTARS.2015.2402232 Lee, J.H., Im, J.: A novel bias correction method for soil moisture and ocean salinity (SMOS) soil moisture retrievals. Remote Sens. 7, 16045–16061 (2015). https://doi.org/10.3390/rs71215824 Lee, J.H., Zhao, C., Kerr, Y.: Stochastic bias correction and uncertainty estimation of satellite-retrieved soil moisture products at foot-print scale: short-range dynamics. Remote Sens. 9(8), 847 (2017). https://doi.org/10.3390/rs908084 Lei, M., Wang, Z., Feng, Z.A.: method of embedding dimension estimation based on symplectic geometry. Phys. Lett. A 303, 179–189 (2002) Li, D., Jin, R., Zhou, J., Kang, J.: Analysis and reduction of the uncertainties in soil moisture estimation with the L-MEB model using EFAST and ensemble retrieval. IEEE Trans. Geosci. Remote Sens. 12, 1337–1341 (2015). https://doi.org/10.1109/LGRS.2015.2399776 Liu, H.-F., Dai, Z.-H., Li, W.-F., Gong, X., Zun-Hong, Y.: Noise robust estimates of the largest Lyapunov exponent. Phys. Lett. A 341(1–4), 119–127 (2005). https://doi.org/10.1016/j.physleta.2005.04.048 Liu, Y., Liu, C., Wang, D.: Understanding atmospheric behaviour in terms of entropy: a review of applications of the second law of thermodynamics to meteorology. Entropy 13, 211–240 (2011) Lu, H., Gong, P.: Multi-algorithm ensemble reconstruction of surface soil moisture over China from AMSR-E. IEEE Int. Geosci. Remote Sens. Sympos. Munich 2012, 718–721 (2012). https://doi.org/10.1109/IGARSS.2012.6351464 Merlin, O., Malbéteau, Y., Notfi, Y., Bacon, S., Khabba, S.E.-R., Jarlan, L.: Performance metrics for soil moisture downscaling methods: application to DISPATCH data in central morocco. Remote Sens. 7, 3783–3807 (2015) Muñoz-Sabater, J.: Incorporation of passive microwave brightness temperatures in the ECMWF soil moisture analysis. Remote Sens. 7, 5758–5784 (2015) Niclòs, R., Rivas, R., García-Santos, V., Doña, C., Valor, E., Holzman, M., Bayala, M., Carmona, F., Ocampo, D., Soldano, Á., Thibeault, M., Caselles, V., Sánchez, J.M.: SMOS level-2 soil moisture product evaluation in rain-fed croplands of the Pampean Region of Argentina. IEEE Trans. Geosci. Remote Sens. 54(1), 499–512 (2016). https://doi.org/10.1109/TGRS.2015.2460332 Oliva, R., Daganzo-Eusebio, E., Kerr, Y.H., Mecklenburg, S., Nieto, S.: SMOS radio frequency interference scenario : status and actions taken to improve the RFI environment in the 1400–1427-MHz passive band. IEEE Trans. Geosci. Remote Sens. 50(5), 1427–1439 (2012) Porporato, A., Rodriguez-Iturbe, I.: From random variability to ordered structures: a search for general synthesis in ecohydrology. Ecohydrology 6, 333–342 (2013). https://doi.org/10.1002/eco.1400 Rao, K.S., Girish Chandra, P.V., Rao, N.: The relationship between brightness temperature and soil moisture selection of frequency range for microwave remote sensing. Int. J. Remote Sens. 8(10), 1531–1545 (1987). https://doi.org/10.1080/01431168708954795 Reichle, R.H., Koster, R.D.: Bias reduction in short records of satellite soil moisture. Geophys. Res. Lett. 31, L19501 (2004). https://doi.org/10.1029/2004GL020938 Reichle, R.H., Koster, R.D., Liu, P., Mahanama, S.P., Njoku, E.G., Owe, M.: Comparison and assimilation of global soil moisture retrievals from the advanced microwave scanning radiometer for the earth observing system (AMSR-E) and the scanning multichannel microwave radiometer (SMMR). J. Geophys. Res. 112, D09108 (2007). https://doi.org/10.1029/2006JD008033 Rodriguez-Iturbe, I., Febres De Power, B., Sharifi, M.B., Georgakakos, K.P.: Chaos in rainfall. Water Resour. Res. 25(7), 1667–1675 (1989). https://doi.org/10.1029/WR025i007p01667 Rosenstein, M.T., Collins, J.J., De Luca, C.J.: A practical method for calculating largest Lyapunov exponents from small data sets. Physica D 65, 117–34 (1993) Sadri, S., Wu, C.Q.: Modified Lyapunov exponent, new measure of dynamics. Nonlinear Dyn. 78, 2731 (2014). https://doi.org/10.1007/s11071-014-1621-9 Scipal, K., Holmes, T., de Jeu, R., Naeimi, V., Wagner, W.: A possible solution for the problem of estimating the error structure of global soil moisture data sets. Geophys. Res. Lett. 35, L24403 (2008). https://doi.org/10.1029/2008GL035599 Schlenz, F., dall’Amico, J.T., Mauser, W., Loew, A.: Analysis of SMOS brightness temperature and vegetation optical depth data with coupled land surface and radiative transfer models in Southern Germany. Hydrol. Earth Syst. Sci. 16, 3517–3533 (2012). https://doi.org/10.5194/hess-16-3517-2012 Seneviratne, S.I., Corti, T., Davin, E.L., Hirschi, M., Jaeger, E.B., Lehner, I., Orlowsky, B., Teuling, A.J.: Investigating soil moisture-climate interactions in a changing climate: a review. Earth Sci. Rev. 99(3–4), 125–161 (2010). https://doi.org/10.1016/j.earscirev.2010.02.004 Seneviratne, S.I., Viterbo, P., Lüthi, D., Schär, C.: Inferring changes in terrestrial water storage using ERA-40 reanalysis data: the Mississippi River basin. J. Clim. 17(11), 2039–2057 (2004) Starks, P.J., Fiebrich, C.A., Grimsley, D.L., Garbrecht, J.D., Steiner, J.L., Guzman, J.A., Moriasi, D.N.: Upper Washita River experimental watersheds: meteorologic and soil climate measurement networks. J. Environ. Qual. 43, 1239–1249 (2014a). https://doi.org/10.2134/jeq2013.08.0312 Starks, P.J., Steiner, J.L., Stern, A.J.: Upper Washita River experimental watersheds: land cover data sets (1974–2007) for two southwestern Oklahoma agricultural watersheds. J. Environ. Qual. 43(6), 1310–1318 (2014b). https://doi.org/10.2134/jeq2013.07.0292 Stigler, Stephen M.: The History of Statistics: The Measurement of Uncertainty before 1900. Harvard University Press, Cambridge (1986). ISBN 0-674-40340-1 Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering. Westview Press, Perseus Books Group, Cambridge (1994) Talone, M., Camps, A., Monerris, A., Vall-llossera, M., Ferrazzoli, P., Piles, M.: Surface topography and mixed-pixel effects on the simulated L-band brightness temperatures. IEEE Trans. Geosci. Remote Sens. 45(7), 1996–2003 (2007). https://doi.org/10.1109/TGRS.2007.898254 Theiler, J., Eubank, S., Longtin, A., Galdikian, B., Farmer, J.D.: Testing for nonlinearity in time series: the method of surrogate data. Physica D 58, 77–94 (1992) Theise, N.D., Kafatos, M.C.: Fundamental awareness: a framework for integrating science, philosophy and metaphysics. Commun. Integr. Biol. 9(3), e1155010 (2016). https://doi.org/10.1080/19420889.2016.1155010 Vallejo, J.C., SanJuan, M.A.F.: Predictability of Chaotic Dynamics. A Finite-Time Lyapunov Exponents Approach. Springer, Berlin (2017) Weigel, A.P., Liniger, M.A., Appenzeller, C.: The discrete brier and ranked probability skill scores. Mon. Weather Rev. 135, 118–124 (2006) Westfall, P.H.: Kurtosis as peakedness (1905–2014) R.I.P. Am. Stat. 68(3), 191–195 (2014). https://doi.org/10.1080/00031305.2014.917055 Wilks, D.S.: Statistical Methods in the Atmospheric Sciences: An Introduction, 2nd edn. Elsevier, New York (2005) Xu, M., Jin, X., Wang, Y.: Stochastic averaging for nonlinear vibration energy harvesting system. Nonlinear Dyn. 78, 1451 (2014). https://doi.org/10.1007/s11071-014-1527-6 Yang, C., Wu, C.Q.: A robust method on estimation of Lyapunov exponents from a noisy time series. Nonlinear Dyn. 64, 279 (2011). https://doi.org/10.1007/s11071-010-9860-x Zhu, W.Q., Huang, Z.L.: Stochastic stabilization of quasi-partially integrable hamiltonian systems by using Lyapunov exponent. Nonlinear Dyn., 33, 209 (2003). https://doi.org/10.1023/A:1026010007067