NIR-II driven plasmon-enhanced cascade reaction for tumor microenvironment-regulated catalytic therapy based on bio-breakable Au–Ag nanozyme

Nano Research - Tập 13 - Trang 2118-2129 - 2020
Min Xu1, Qianglan Lu1, Yiling Song1, Lifang Yang1, Chuchu Ren1, Wen Li1, Ping Liu1, Yule Wang2,3, Yan Zhu2,3, Nan Li1
1Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
2Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
3Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China

Tóm tắt

Emerging nanozymes with natural enzyme-mimicking catalytic activities have inspired extensive research interests due to their high stability, low cost, and simple preparation, especially in the field of catalytic tumor therapy. Here, bio-breakable nanozymes based on glucose-oxidase (GOx)-loaded biomimetic Au–Ag hollow nanotriangles (Au–Ag–GOx HTNs) are designed, and they trigger an near-infrared (NIR)-II-driven plasmon-enhanced cascade catalytic reaction through regulating tumor microenvironment (TME) for highly efficient tumor therapy. Firstly, GOx can effectively trigger the generation of gluconic acid (H+) and hydrogen peroxide (H2O2), thus depleting nutrients in the tumor cells as well as modifying TME to provide conditions for subsequent peroxidase (POD)-like activity. Secondly, NIR-II induced surface plasmon resonance can induce hot electrons to enhance the catalytic activity of Au–Ag–GOx HTNs, eventually boosting the generation of hydroxyl radicals (•OH). Interestingly, the generated H2O2 and H+ can simultaneously induce the degradation of Ag nanoprisms to break the intact triangle nanostructure, thus promoting the excretion of Au–Ag–GOx HTNs to avoid the potential risks of drug metabolism. Overall, the NIR-II driven plasmon-enhanced catalytic mechanism of this bio-breakable nanozyme provides a promising approach for the development of nanozymes in tumor therapy.

Tài liệu tham khảo

Huo, M. F.; Wang, L. Y.; Chen, Y.; Shi, J. L. Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nat. Commun.2017, 8, 1–12. Gao, S. S.; Lin, H.; Zhang, H. X.; Yao, H. L.; Chen, Y.; Shi, J. L. Nanocatalytic tumor therapy by biomimetic dual inorganic nanozymecatalyzed cascade reaction. Adv. Sci.2019, 6, 1801733. Li, S. S.; Shang, L.; Xu, B. L.; Wang, S. H.; Gu, K.; Wu, Q. Y.; Sun, Y.; Zhang, Q. H.; Yang, H. L.; Zhang, F. R. et al. A nanozyme with photo-enhanced dual enzyme-like activities for deep pancreatic cancer therapy. Angew.Chem., Int. Ed.2019, 58, 12624–12631. Wen, M.; Ouyang, J.; Wei, C. W.; Li, H.; Chen, W. S.; Liu, Y. N. Artificial enzyme-catalyzed cascade reactions for antitumor immunotherapy reinforced by NIR-II light. Angew. Chem., Int. Ed.2019, 58, 17425–17432. Wu, J. J.; Wang, X. Y.; Wang, Q.; Lou, Z. P.; Li, S. R.; Zhu, Y. Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev.2019, 48, 1004–1076. Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev.2013, 42, 6060–6093. Lin, Y. H.; Ren, J. S.; Qu, X. G. Catalytically active nanomaterials: A promising candidate for artificial enzymes. Account. Chem. Res.2014, 47, 1097–1105. Pratsinis, A.; Kelesidis, G. A.; Zuercher, S.; Krumeich, F.; Bolisetty, S.; Mezzenga, R.; Leroux, J. C.; Sotiriou, G. A. Enzyme-mimetic antioxidant luminescent nanoparticles for highly sensitive hydrogen peroxide biosensing. ACS Nano2017, 11, 12210–12218. Zhang, Z. J.; Zhang, X. H.; Liu, B. W.; Liu, J. W. Molecular imprinting on inorganic nanozymes for hundred-fold enzyme specificity. J. Am. Chem. Soc.2017, 139, 5412–5419. Sun, H. J.; Zhou, Y.; Ren, J. S.; Qu, X. G. Carbon nanozymes: Enzymatic properties, catalytic mechanism, and applications. Angew. Chem., Int. Ed.2018, 57, 9224–9237. Karim, M. N.; Singh, M.; Weerathunge, P.; Bian, P. J.; Zheng, R. K.; Dekiwadia, C.; Ahmed, T.; Walia, S.; Gaspera, E. D.; Singh, S. et al. Visible-light-triggered reactive-oxygen-species-mediated antibacterial activity of peroxidase-mimic CuO nanorods. ACS Appl. Nano Mater.2018, 1, 1694–1704. Wang, H.; Li, P. H.; Yu, D. Q.; Zhang, Y.; Wang, Z. Z.; Liu, C. Q.; Qiu, H.; Liu, Z.; Ren, J. S.; Qu, X. G. Unraveling the enzymatic activity of oxygenated carbon nanotubes and their application in the treatment of bacterial infections. Nano Lett.2018, 18, 3344–3351. Wang, Q. Q.; Wei, H.; Zhang, Z. Q.; Wang, E. K.; Dong, S. J. Nanozyme: An emerging alternative to natural enzyme for biosensing and immunoassay. TrAC Trends Anal. Chem.2018, 105, 218–224. Nagvenkar, A. P.; Gedanken, A. Cu0.89Zn0.11O, a new peroxidasemimicking nanozyme with high sensitivity for glucose and antioxidant detection. ACS Appl. Mater. Interfaces2016, 8, 22301–22308. Fan, J.; Yin, J. J.; Ning, B.; Wu, X. C.; Hu, Y.; Ferrari, M.; Anderson, G. J.; Wei, J. Y.; Zhao, Y. L.; Nie, G. J. Direct evidence for catalase and peroxidase activities of ferritin-platinum nanoparticles. Biomaterials2011, 32, 1611–1618. Jv, Y.; Li, B. X.; Cao, R. Positively-charged gold nanoparticles as peroxidase mimic and their application in hydrogen peroxide and glucose detection. Chem. Commun.2010, 46, 8017–8019. Zhang, Y.; Wang, F. M.; Liu, C. Q.; Wang, Z. Z.; Kang, L. H.; Huang, Y. Y.; Dong, K.; Ren, J. S.; Qu, X. G. Nanozyme decorated metal-organic frameworks for enhanced photodynamic therapy. ACS Nano2018, 12, 651–661. Yang, Y.; Chen, M.; Wang, B. Z.; Wang, P.; Liu, Y. C.; Zhao, Y.; Li, K.; Song, G. S.; Zhang, X. B.; Tan, W. H. NIR-II driven plasmon-enhanced catalysis for a timely supply of oxygen to overcome hypoxiainduced radiotherapy tolerance. Angew. Chem., Int. Ed.2019, 58, 15069–15075. Asati, A.; Santra, S.; Kaittanis, C.; Nath, S.; Perez, J. M. Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew. Chem., Int. Ed.2009, 48, 2308–2312. Wan, Y.; Qi, P.; Zhang, D.; Wu, J. J.; Wang, Y. Manganese oxide nanowire-mediated enzyme-linked immunosorbent assay. Biosens. Bioelectron.2012, 33, 69–74. Song, Y. J.; Qu, K. G.; Zhao, C.; Ren, J. S.; Qu, X. G. Graphene oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection. Adv. Mater.2010, 22, 2206–2210. Guo Y. J.; Deng, L.; Li, J.; Guo, S. J.; Wang, E. K.; Dong, S. J. Hemin-graphene hybrid nanosheets with intrinsic peroxidase-like activity for label-free colorimetric detection of single-nucleotide polymorphism. ACS Nano2011, 5, 1282–1290. Fu, L. H.; Hu, Y. R.; Qi, C.; He, T.; Jiang, S. S.; Jiang, C.; He, J.; Qu, J. L.; Lin, J.; Huang, P. Biodegradable manganese-doped calcium phosphate nanotheranostics for traceable cascade reaction-enhanced anti-tumor therapy. ACS Nano2019, 13, 13985–13994. Feng, L. L.; Xie, R.; Wang, C. Q.; Gai, S. L.; He, F.; Yang, D.; Yang, P. P.; Lin, J. Magnetic targeting, tumor microenvironment-responsive intelligent nanocatalysts for enhanced tumor ablation. ACS Nano2018, 12, 11000–11012. He, W. W.; Wu, X. C.; Liu, J. B.; Hu, X. N.; Zhang, K.; Hou, S.; Zhou, W. Y.; Xie, S. S. Design of AgM bimetallic alloy nanostructures (M = Au, Pd, Pt) with tunable morphology and peroxidase-like activity. Chem. Mater.2010, 22, 2988–2994. Yin, Z.; Wang, Y.; Song, C. Q.; Zheng, L. H.; Ma, N.; Liu, X.; Li, S. W.; Lin, L. L.; Li, M. Z.; Xu, Y. et al. Hybrid Au-Ag nanostructures for enhanced plasmon-driven catalytic selective hydrogenation through visible light irradiation and surface-enhanced Raman scattering. J. Am. Chem. Soc.2018, 140, 864–867. Li, Z. Z.; Bao, S. D.; Wu, Q. L.; Wang, H.; Eyler, C.; Sathornsumetee, S.; Shi, Q.; Cao, Y. T.; Lathia, J.; McLendon, R. E. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell2009, 15, 501–513. Cao, Y.; Wu, T. T.; Zhang, K.; Meng, X. D.; Dai, W. H.; Wang, D. D.; Dong, H. F.; Zhang, X. J. Engineered exosome-mediated near-infrared-II region V2C quantum dot delivery for nucleus-target low-temperature photothermal therapy. ACS Nano2019, 13, 1499–1510. Lin, H.; Gao, S. S.; Dai, C.; Chen, Y.; Shi, J. L. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. J. Am. Chem. Soc.2017, 139, 16235–16247. Li, C. Y.; Li, F.; Zhang, Y. J.; Zhang, W. J.; Zhang, X. E.; Wang, Q. B. Real-time monitoring surface chemistry-dependent in vivo behaviors of protein nanocages via encapsulating an NIR-II Ag2S quantum dot. ACS Nano2015, 9, 12255–12263. Sun, M. M.; Qian, H. M.; Liu, J.; Li, Y. C.; Pang, S. P.; Xu, M.; Zhang, J. T. A flexible conductive film prepared by the oriented stacking of Ag and Au/Ag alloy nanoplates and its chemically roughened surface for explosive SERS detection and cell adhesion. RSC Adv.2017, 7, 7073–7078. Guo, X.; Ye, W.; Sun, H. Y.; Zhang, Q.; Yang, J. A dealloying process of core-shell Au@AuAg nanorods for porous nanorods with enhanced catalytic activity. Nanoscale2013, 5, 12582–12588. Zhang, X.; Zhang, G. Y.; Zhang, B. D.; Su, Z. H. Synthesis of hollow Ag-Au bimetallic nanoparticles in polyelectrolyte multilayers. Langmuir2013, 29, 6722–6727. Nambara, K.; Niikura, K.; Mitomo, H.; Ninomiya, T.; Takeuchi, C.; Wei, J. J.; Matsuo, Y.; Ijiro, K. Reverse size dependences of the cellular uptake of triangular and spherical gold nanoparticles. Langmuir2016, 32, 12559–12567. Chang, K. W.; Liu, Z. H.; Fang, X. F; Chen, H. B.; Men, X. J.; Yuan, Y.; Sun, K.; Zhang, X. J.; Yuan, Z.; Wu, C. F. Enhanced phototherapy by nanoparticle-enzyme via generation and photolysis of hydrogen peroxide. Nano Lett.2017, 17, 4323–4329. Lin, H.; Chen, Y.; Shi, J. L. Nanoparticle-triggered in situ catalytic chemical reactions for tumour-specific therapy. Chem. Soc. Rev.2018, 47, 1938–1958. Zhang, M. K.; Li, C. X.; Wang, S. B.; Liu, T.; Song, X. L.; Yang, X. Q.; Feng, J.; Zhang, X. Z. Tumor starvation induced spatiotemporal control over chemotherapy for synergistic therapy. Small2018, 14, 1803602. Zhang, C.; Ni, D. L.; Liu, Y. Y.; Yao, H. L.; Bu, W. B.; Shi, J. L. Magnesium silicide nanoparticles as a deoxygenation agent for cancer starvation therapy. Nat. Nanotech.2017, 12, 378–386. Zhang, Q.; Li, N.; Goebl, J.; Lu, Z. D.; Yin, Y. D. A systematic study of the synthesis of silver nanoplates: Is citrate a “magic” reagent? J. Am. Chem. Soc.2011, 133, 18931–18939. Zhang, Y. F.; Yang, Y. C.; Jiang, S. S.; Li, F.; Lin, J.; Wang, T. F.; Huang, P. Degradable silver-based nanoplatform for synergistic cancer starving-like/metal ion therapy. Materials Horizons2019, 6, 169–175. Li, Y.; Zhao, X. J.; Zhang, P. P.; Ning, J.; Li, F.J.; Su, Z. Q.; Wei, G. A facile fabrication of large-scale reduced graphene oxide-silver nanoparticle hybrid film as a highly active surface-enhanced Raman scattering substrate. J. Mater. Chem. C.2015, 3, 4126–4133. Fang, X.; Liu, F. J.; Wang, J.; Zhao, H.; Ren, H. X.; Li, Z. X. Dual signal amplification strategy of Au nanopaticles/ZnO nanorods hybridized reduced graphenenanosheet and multienzyme functionalized Au@ZnO composites for ultrasensitive electro-chemical detection of tumor biomarker. Biosens. Bioelectron.2017, 97, 218–225. Wang, B. K.; Wang, J. H.; Liu, Q.; Huang, H.; Chen, M.; Li, K. Y.; Li, C. Z.; Yu, X. F.; Chu, P. K. Rose-bengal-conjugated gold nanorods for in vivo photodynamic and photothermal oral cancer therapies. Biomaterials2014, 35, 1954–1966. Hessel, C. M.; Pattani, V. P.; Rasch, M.; Panthani, M. G.; Koo, B.; Tunnell, J. W.; Korgel, B. A. Copper selenidenanocrystals for photothermal therapy. Nano Lett.2011, 11, 2560–2566.