Large deviations for the stochastic shell model of turbulence

U. Manna1, S. S. Sritharan2, P. Sundar3
1Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
2Graduate School of Engineering and Applied Sciences, Naval Postgraduate School, Monterey, USA
3Department of Mathematics, Louisiana State University, Baton Rouge, USA

Tóm tắt

In this work, we first prove the existence and uniqueness of a strong solution to stochastic GOY model of turbulence with a small multiplicative noise. Then using the weak convergence approach, Laplace principle for solutions of the stochastic GOY model is established in certain Polish space. Thus a Wentzell–Freidlin type large deviation principle is established utilizing certain results by Varadhan and Bryc.

Tài liệu tham khảo

Amirdjanova A., Xiong J.: Large deviation principle for a stochastic Navier–Stokes equation in its vorticity form for a two-dimensional incompressible flow. Discrete Contin. Dyn. Syst. Ser. B 6(4), 651–666 (2006) Barbato D., Barsanti M., Bessaih H., Flandoli F.: Some rigorous results on a stochastic Goy model. J. Stat. Phys. 125(3), 677–716 (2006) Bensoussan A., Temam R.: Equations aux dérivées partielles stochastiques non linéaries(1). Isr. J. Math. 11(1), 95–129 (1972) Budhiraja A., Dupuis P.: A variational representation for positive functionals of infinite dimensional Brownian motion. Probab. Math. Stat. 20, 39–61 (2000) Capinsky M., Gatarek D.: Stochastic equations in Hilbert space with application to Navier–Stokes equations in any dimension. J. Funct. Anal. 126, 26–35 (1994) Chang M-H.: Large deviation for Navier–Stokes equations with small stochastic perturbation. Appl. Math. Comp. 76, 65–93 (1996) Chow P-L.: Large deviation problem for some parabolic Îto equations. Comm. Pure Appl. Math. 45, 97–120 (1992) Constantin P., Levant B., Titi E.S.: Analytic study of shell models of turbulence. Phys. D 219(2), 120–141 (2006) Da Prato G., Zabczyk J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (1992) Dembo A., Zeitouni O.: Large Deviations Techniques and Applications. Springer, New York (2000) Deuschel J-D., Stroock D.W.: Large Deviations. Academic Press, San Diego (1989) Dunford N., Schwartz J.: Linear Operators Interscience Publishers. Wiley, New York (1958) Dupuis P., Ellis R.S.: A Weak Convergence Approach to the Theory of Large Deviations. Wiley-Interscience, New York (1997) Ellis R.S.: Entropy, Large Deviations and Statistical Mechanics. Springer, New York (1985) Flandoli F., Gatarek D.: Martingale and stationary solutions for stochastic Navier–Stokes equations. Prob. Theory Rel. Fields. 102, 367–391 (1995) Fleming W.H.: A stochastic control approach to some large deviations problems. In: RecentMathematicalMethods. Dolcetta, C., Fleming, W.H., Zolezzi, T. (eds) Dynamic Programming. Lecture Notes in Math., vol 1119., pp. 52–66. Springer, Heidelberg (1985) Freidlin M.I., Wentzell A.D.: Random Pertubations of Dynamical Systems. Springer, New York (1984) Frisch U.: Turbulence. Cambridge University Press, Cambridge (1995) Kadanoff L., Lohse D., Wang J., Benzi R.: Scaling and dissipation in the GOY shell model. Phys. Fluids 7(3), 617–629 (1995) Kallianpur, G., Xiong, J.: Stochastic Differential Equations in Infinite Dimensional Spaces. Institute of Math. Stat. (1996) Karatzas I., Shreve S.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer, New York (1991) Krylov N.V., Rozovskii B.L.: Stochastic evolution equations. J. Sov. Math. 16, 1233–1277 (1981) Ladyzhenskaya O.A.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New York (1969) L’vov V.S., Podivilov E., Pomyalov A., Procaccia I., Vandembroucq D.: Improved shell model of turbulence. Phys. Rev. E(3) 58(2), 1811–1822 (1998) Manna, U., Menaldi, J.L., Sritharan, S.S.: Stochastic Analysis of Tidal Dynamics Equation. Infinite Dimensional Stochastic Analysis, pp. 90–113, QP–PQ: Quantum Probab. White Noise Anal., 22, World Science, Hackensack (2008) Manna U., Menaldi J.L., Sritharan S.S.: Stochastic 2-D Navier–Stokes equation with artificial compressibility. Commun. Stoch. Anal. 1(1), 123–139 (2007) Menaldi J.L., Sritharan S.S.: Stochastic 2-D Navier–Stokes Equation. Appl. Math. Optim. 46, 31–53 (2002) Metivier M.: Stochastic Partial Differential Equations in Infinite Dimensional Spaces. Quaderni, Scuola Normale Superiore, Pisa (1988) Ohkitani K., Yamada M.: Temporal intermittency in the energy cascade process and local Lyapunov analysis in fully developed model of turbulence. Prog. Theor. Phys. 89, 329–341 (1989) Pardoux, E.: Equations aux derivées partielles stochastiques non linéaires monotones. Etude de solutions fortes de type Itô; Thése Doct. Sci. Math. Univ. Paris Sud (1975) Pardoux E.: Sur des equations aux dérivées partielles stochastiques monotones. C. R. Acad. Sci. 275(2), A101–A103 (1972) Quastel J., Yau H.-T.: Lattice gases, large deviations, and the incompressible Navier–Stokes equations. Ann. Math. 2nd Ser. 148(1), 51–108 (1998) Sowers R.: Large deviations for a reaction diffusion equation with non-Gaussian perturbations. Ann. Probab. 20, 504–537 (1992) Sritharan S.S., Sundar P.: Large deviations for the two-dimensional Navier–Stokes equations with multiplicative noise. Stoc. Process. Appl. 116, 1636–1659 (2006) Stroock D.: An Introduction to the Theory of Large Deviations. Springer, Universitext (1984) Temam R.: Navier–Stokes Equations, Theory and Numerical Analysis. North-Holland, Amsterdam (1984) Varadhan, S.R.S.: Large deviations and its Applications, 46, CBMS-NSF Series in Applied Mathematics, SIAM, Philadelphia (1984) Vishik M.J., Fursikov A.V.: Mathematical Problems of Statistical Hydromechanics. Kluwer, Boston (1980)