Dilaton stabilization by massive fermion matter
Tóm tắt
The study started by Cabo and Brandenberger (J. Cosmol. Astropart. Phys. 2:15, 2009) about the Dilaton mean field stabilization thanks to the effective potential generated by the existence of massive fermions, is here extended. Three loop corrections are evaluated in addition to the previously calculated two loop terms. The results indicate that the Dilaton vacuum field tends to be fixed at a high value close to the Planck scale, in accordance with the need for predicting Einstein gravity from string theory. The mass of the Dilaton is evaluated to be also a high value close to the Planck mass, which implies the absence of Dilaton scalar signals in modern cosmological observations. These properties arise when the fermion mass is chosen to be either at a lower bound corresponding to the top quark mass, or alternatively, at a very much higher value assumed to be in the grand unification energy range. One of the three 3-loop terms is exactly evaluated in terms of Master integrals. The other two graphs are however evaluated in their leading logarithm correction in the perturbative expansion. The calculation of the non leading logarithmic contribution and the inclusion of higher loops terms could made more precise the numerical estimates of the vacuum field value and masses, but seemingly are expected not to change the qualitative behavior obtained. The validity of the here employed Yukawa model approximation is argued for small value of the fermion masses with respect to the Planck one. A correction to the two loop calculation done in the previous work is here underlined.
Tài liệu tham khảo
Adelberger, E.G., Heckel, B.R., Nelson, A.E.: Tests of the gravitational inverse-square law. Annu. Rev. Nucl. Part. Sci. 53, 77 (2003). hep-ph/0307284
Affleck, I., Dine, M., Seiberg, N.: Supersymmetry breaking by instantons. Phys. Rev. Lett. 51, 1026 (1983)
Affleck, I., Dine, M., Seiberg, N.: Dynamical supersymmetry breaking in supersymmetric QCD. Nucl. Phys. B 241, 493 (1984)
Affleck, I., Dine, M., Seiberg, N.: Dynamical supersymmetry breaking in four-dimensions and its phenomenological implications. Nucl. Phys. B 256, 557 (1985)
Battefeld, T., Watson, S.: String gas cosmology. Rev. Mod. Phys. 78, 435 (2006). hep-th/0510022
Brandenberger, R.H.: Moduli stabilization in string gas cosmology. Prog. Theor. Phys. Suppl. 163, 358 (2006). hep-th/0509159
Brandenberger, R.H.: String gas cosmology and structure formation: A brief review. Mod. Phys. Lett. A 22, 1875 (2007). hep-th/0702001
Brandenberger, R.H., Vafa, C.: Superstrings in the early universe. Nucl. Phys. B 316, 391 (1989)
Brandenberger, R.H., Nayeri, A., Patil, S.P., Vafa, C.: String gas cosmology and structure formation. Int. J. Mod. Phys. A 22, 3621 (2007a). hep-th/0608121
Brandenberger, R.H., Nayeri, A., Patil, S.P., Vafa, C.: Tensor modes from a primordial Hagedorn phase of string cosmology. Phys. Rev. Lett. 98, 231302 (2007b). hep-th/0604126
Cabo, A., Brandenberger, R.H.: Could fermion masses play a role in the stabilization of the dilaton in cosmology? J. Cosmol. Astropart. Phys. 02, 015 (2009)
Coleman, S., Weinberg, E.: Phys. Rev. D 7, 1888 (1973)
Damour, T., Polyakov, A.M.: The string dilaton and a least coupling principle. Nucl. Phys. B 423, 532 (1994). hep-th/9401069
Danos, R.J., Frey, A.R., Brandenberger, R.H.: Stabilizing moduli with thermal matter and nonperturbative effects (2008). 0802.1557 [hep-th]
Dine, M., Rohm, R., Seiberg, N., Witten, E.: Gluino condensation in superstring models. Phys. Lett. B 156, 55 (1985)
Elizalde, E., Naftulin, S., Odintsov, S.D.: One-loop divergence in dilaton gravitation with neutral fermions. Phys. Rev. D 49, 2852 (1994)
Ferrara, S., Girardello, L., Nilles, H.P.: Breakdown of local supersymmetry through gauge fermion condensates. Phys. Lett. B 125, 457 (1983)
Giddings, S.B., Kachru, S., Polchinski, J.: Hierarchies from fluxes in string compactifications. Phys. Rev. D 66, 106006 (2002). hep-th/0105097
Green, M.B., Schwartz, J.H., Witten, E.: Superstring Theory. Cambridge University Press, Cambridge (1987)
Jona-Lasinio, G.: Nuovo Cimento 34, 1790 (1964)
Muta, T.: Foundations of Quantum Chromodynamics. World Scientific Lecture Notes, vol. 5. World Scientific, Singapore (1987)
Nayeri, A., Brandenberger, R.H., Vafa, C.: Producing a scale-invariant spectrum of perturbations in a Hagedorn phase of string cosmology (2005). hep-th/0511140
Nayeri, A.: Inflation free, stringy generation of scale-invariant cosmological fluctuations in D=3+1 dimensions (2006). hep-th/0607073
Schroder, Y., Vuorinen, A.: High-precision epsilon expansion of single-mass-scale four-loop vacuum bubbles. J. High Energy Phys. 0506, 051 (2005). hep-ph/0503209v1
Shifman, M.A., Vainshtein, A.I.: On gluino condensation in supersymmetric gauge theories. SU(N) and O(N) groups. Nucl. Phys. B 296, 445 (1988). [Sov. Phys. JETP 66, 1100 (1987)]
Tseytlin, A.A., Vafa, C.: Elements of string cosmology. Nucl. Phys. B 372, 443 (1992). hep-th/9109048
Veneziano, G.: Scale factor duality for classical and quantum strings. Phys. Lett. B 265, 287 (1991)