Substrate temperature-dependent thermoelectric figure of merit of nanocrystalline Bi2Te3 and Bi2Te2.7Se0.3 prepared using pulsed laser deposition supported by DFT study

Ceramics International - Tập 46 - Trang 24162-24172 - 2020
Y.S. Wudil1,2, M.A. Gondal1,2, S.G. Rao1, S. Kunwar1, A.Q. Alsayoud3
1Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum & Minerals (KFUPM), Mailbox 5047, Dhahran, 31261, Saudi Arabia
2K.A.CARE Energy Research and Innovation Center, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
3Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Dhahran, Saudi Arabia

Tài liệu tham khảo

Pavan Kumar, 2019, High power factors of thermoelectric colusites Cu 26 T 2 Ge 6 S 32 ( T = Cr, Mo, W): toward functionalization of the conductive “Cu–S” network, Adv. Energy Mater., 9, 1803249, 10.1002/aenm.201803249 Snyder, 2010, Complex thermoelectric materials, 101 Joshi, 2008, Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys, Nano Lett., 8, 4670, 10.1021/nl8026795 Cecchini, 2019, High-Density Sb 2 Te 3 Nanopillars Arrays by Templated, Bottom-Up MOCVD Growth, Small, 1901743, 10.1002/smll.201901743 Zhang, 2015, Controlled growth of bismuth antimony telluride BixSb2−xTe3 nanoplatelets and their bulk thermoelectric nanocomposites, Nano Energy, 15, 688, 10.1016/j.nanoen.2015.05.022 Chen, 2018, Laser co-ablation of bismuth antimony telluride and diamond-like carbon nanocomposites for enhanced thermoelectric performance, J. Mater. Chem. A., 6, 982, 10.1039/C7TA08701B Rodríguez-Fernández, 2016, The fingerprint of Te-rich and stoichiometric Bi 2 Te 3 nanowires by Raman spectroscopy, Nanotechnology, 27, 10.1088/0957-4484/27/7/075706 Li, 2019, Realized high power factor and thermoelectric performance in Cu3SbSe4, Intermetallics, 109, 68, 10.1016/j.intermet.2019.03.009 Vieira, 2019, Enhanced thermoelectric properties of Sb2Te3 and Bi2Te3 films for flexible thermal sensors, J. Alloys Compd., 774, 1102, 10.1016/j.jallcom.2018.09.324 Yu, 2013, Fabrication and characterization of textured Bi2Te3 thermoelectric thin films prepared on glass substrates at room temperature using pulsed laser deposition, J. Cryst. Growth, 362, 247, 10.1016/j.jcrysgro.2012.05.045 Poudel, 2008, High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys, Science, 320, 634, 10.1126/science.1156446 Le, 2014, Thermoelectric properties of nanostructured bismuth–telluride thin films grown using pulsed laser deposition, J. Alloys Compd., 615, 546, 10.1016/j.jallcom.2014.07.018 Dresselhaus, 1999, Low-dimensional thermoelectric materials, 679 Venkatasubramanian, 2001, Thin-film thermoelectric devices with high room-temperature figures of merit, Nature, 413, 597, 10.1038/35098012 Chen, 2019, A d-band electron correlated thermoelectric thermistor established in metastable perovskite family of rare-earth nickelates, ACS Appl. Mater. Interfaces, 11, 34128, 10.1021/acsami.9b12609 Ahmad, 2019, Enhanced thermoelectric performance of Bi2Te3 based graphene nanocomposites, Appl. Surf. Sci., 474, 2, 10.1016/j.apsusc.2018.10.163 German, 2019, Phonon mode calculations and Raman spectroscopy of the bulk-insulating topological insulator BiSbTeSe 2, Phys. Rev. Mater., 3 Soni, 2012, Enhanced thermoelectric properties of solution grown Bi 2 Te 3– x Se x nanoplatelet composites, Nano Lett., 12, 1203, 10.1021/nl2034859 Yu, 2010, Quantized anomalous Hall effect in magnetic topological insulators, Science, 329, 61, 10.1126/science.1187485 Dresselhaus, 2007, New directions for low-dimensional thermoelectric materials, Adv. Mater., 19, 1043, 10.1002/adma.200600527 Salhi, 2018, Review of recent developments and persistent challenges in stability of perovskite solar cells, Renew. Sustain. Energy Rev., 90, 210, 10.1016/j.rser.2018.03.058 Alam, 2013, A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials, Nano Energy, 2, 190, 10.1016/j.nanoen.2012.10.005 Vikram, 2018, Enhanced thermoelectric performance of Mg2Si1-xSnx codoped with Bi and Cr, Phys. Rev. B, 98, 10.1103/PhysRevB.98.115204 Ashalley, 2015, Bismuth telluride nanostructures: preparation, thermoelectric properties and topological insulating effect, Front. Mater. Sci., 9, 103, 10.1007/s11706-015-0285-9 Wang, 2013, Metal nanoparticle decorated n-type Bi2Te3-based materials with enhanced thermoelectric performances, Nanotechnology, 24, 10.1088/0957-4484/24/28/285702 Mntungwa, 2014, A simple route to Bi2Se3 and Bi2Te 3 nanocrystals, Superlattice. Microst., 69, 226, 10.1016/j.spmi.2014.02.021 Hu, 2019, Incongruent pulsed laser deposition strategy for thin film growth of Ca 3 Co 4 O 9 thermoelectric compound, Ceram. Int., 45, 13138, 10.1016/j.ceramint.2019.03.248 Darwish, 2019, Thermoelectric properties of Al-doped ZnO composite films with polymer nanoparticles prepared by pulsed laser deposition, Compos. B Eng., 167, 406, 10.1016/j.compositesb.2019.02.043 Eng, 2005, Influence of pulsed laser deposition growth conditions on the thermoelectric properties of Ca3 Co4 O9 thin films, J. Appl. Phys., 97, 10.1063/1.1823582 Rogé, 2019, Effect of post-deposition thermal treatment on thermoelectric properties of pulsed-laser deposited Ca3Co4O9 thin films, Mater. Chem. Phys., 221, 361, 10.1016/j.matchemphys.2018.09.069 de la Figuera, 2015, Self-organized single crystal mixed magnetite/cobalt ferrite films grown by infrared pulsed-laser deposition, Appl. Surf. Sci., 359, 480, 10.1016/j.apsusc.2015.10.104 Drmosh, 2013, Crystalline nanostructured Cu doped ZnO thin films grown at room temperature by pulsed laser deposition technique and their characterization, Appl. Surf. Sci., 270, 104, 10.1016/j.apsusc.2012.12.126 Wudil, 2019, Thermal conductivity of PLD-grown thermoelectric Bi2Te2.7Se0.3 films using temperature-dependent Raman spectroscopy technique, Ceram. Int. Hrahsheh, 2017, Confined phase separation of aqueous–organic nanodroplets, Phys. Chem. Chem. Phys., 19, 26839, 10.1039/C7CP04531J Giannozzi, 2009, Quantum espresso: a modular and open-source software project for quantum simulations of materials, J. Phys. Condens. Matter, 21, 10.1088/0953-8984/21/39/395502 Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865 Wiese, 1960, Lattice constants of Bi2Te3-Bi2Se3 solid solution alloys, J. Phys. Chem. Solid., 15, 13, 10.1016/0022-3697(60)90094-9 Liu, 2011, Thermoelectric property studies on Cu-doped n-type CuxBi2Te2.7Se0.3 nanocomposites, Adv. Energy Mater., 1, 577, 10.1002/aenm.201100149 Hajji, 2018, Strain effects on the electronic and thermoelectric properties of Bi2Te3: a first principles study, Comput. Condens. Matter., 16, 10.1016/j.cocom.2018.e00299 Ma, 2015, First-principles study of the structures and electronic band properties of Bi 2 Te 3 { 0 1 1 ‾ 5 } nanoribbons, AIP Adv., 5, 10.1063/1.4922604 Park, 2010, Electronic structure and volume effect on thermoelectric transport in p -type Bi and Sb tellurides, Phys. Rev. B Condens. Matter, 81, 10.1103/PhysRevB.81.155211 Hernández-Haro, 2019, DFT prediction of band gap in organic-inorganic metal halide perovskites: an exchange-correlation functional benchmark study, Chem. Phys., 516, 225, 10.1016/j.chemphys.2018.09.023 Gharsallah, 2017, Influence of doping and nanostructuration on n-type Bi2(Te0.8Se0.2)3 alloys synthesized by arc melting, Nanoscale Res. Lett., 12, 47, 10.1186/s11671-016-1823-9 Wang, 2012, Enhanced thermoelectric properties of Bi2(Te 1-xSex)3-based compounds as n-type legs for low-temperature power generation, J. Mater. Chem., 22, 20943, 10.1039/c2jm34608g Fleurial, 1988, Thermal properties of high quality single crystals of bismuth telluride—Part I: experimental characterization, J. Phys. Chem. Solid., 49, 1237, 10.1016/0022-3697(88)90182-5 Bailini, 2007, Pulsed laser deposition of Bi2Te3 thermoelectric films, Appl. Surf. Sci., 254, 1249, 10.1016/j.apsusc.2007.09.039 Kim, 2001, Composition-dependent layered structure and transport properties in BiTe thin films, Phys. Rev. B, 63, 155306, 10.1103/PhysRevB.63.155306 Cho, 1999, Antisite defects of Bi2Te3 thin films, Appl. Phys. Lett., 75, 1401, 10.1063/1.124707 Dauscher, 1996, Pulsed laser deposition of Bi2Te3 thin films, Thin Solid Films, 280, 61, 10.1016/0040-6090(95)08221-2 Oujja, 2018, Effect of wavelength, deposition temperature and substrate type on cobalt ferrite thin films grown by pulsed laser deposition, Appl. Surf. Sci., 452, 19, 10.1016/j.apsusc.2018.05.012 Parbatani, 2019, High performance broadband bismuth telluride tetradymite topological insulator photodiode, Nanotechnology, 30, 165201, 10.1088/1361-6528/aafc84 Zhang, 2011, Raman spectroscopy of few-quintuple layer topological insulator Bi 2 Se 3 nanoplatelets, Nano Lett., 11, 2407, 10.1021/nl200773n Kullmann, 1984, Effect of hydrostatic and uniaxial pressure on structural properties and Raman active lattice vibrations in Bi2Te3, Phys. Status Solidi, 125, 131, 10.1002/pssb.2221250114 Jenkins, 1972, Elastic moduli and phonon properties of Bi 2 Te 3, Phys. Rev. B, 5, 3171, 10.1103/PhysRevB.5.3171 Russo, 2008, Raman spectroscopy of Bi-Te thin films, J. Raman Spectrosc., 39, 205, 10.1002/jrs.1874 Chen, 2014, Plasma interactions determine the composition in pulsed laser deposited thin films, Appl. Phys. Lett., 105, 114104, 10.1063/1.4895788 Greenaway, 1965, Band structure of bismuth telluride, bismuth selenide and their respective alloys, J. Phys. Chem. Solid., 26, 1585, 10.1016/0022-3697(65)90092-2 Soni, 2012, Enhanced thermoelectric properties of solution grown Bi 2 Te 3– x Se x nanoplatelet composites, Nano Lett., 12, 1203, 10.1021/nl2034859 Yalamarthy, 2018, Thermoelectrics: tuning electrical and thermal transport in AlGaN/GaN heterostructures via buffer layer engineering, Adv. Funct. Mater., 28, 1870152, 10.1002/adfm.201870152 Wudil, 2020, Improved thermoelectric performance of ternary Cu/Ni/Bi2Te2.7Se0.3 nanocomposite prepared by pulsed laser deposition, Mater. Chem. Phys., 123321, 10.1016/j.matchemphys.2020.123321 Kleinke, 2010, New bulk materials for thermoelectric power generation: clathrates and complex antimonides †, Chem. Mater., 22, 604, 10.1021/cm901591d Agarwal, 2016, Nanoscale thermoelectric properties of Bi2Te3 – graphene nanocomposites: conducting atomic force, scanning thermal and kelvin probe microscopy studies, J. Alloys Compd., 681, 394, 10.1016/j.jallcom.2016.04.161 Banik, 2019, Thermoelectric properties of metal chalcogenides nanosheets and nanofilms grown by chemical and physical routes, 157 Nolas Zebarjadi, 2006, Thermoelectric transport perpendicular to thin-film heterostructures calculated using the Monte Carlo technique, Phys. Rev. B, 74, 195331, 10.1103/PhysRevB.74.195331 Zebarjadi, 2011, Low-temperature thermoelectric power factor enhancement by controlling nanoparticle size distribution, Nano Lett., 11, 225, 10.1021/nl103581z Sahoo, 2013, Temperature-dependent Raman studies and thermal conductivity of few-layer MoS 2, J. Phys. Chem. C, 117, 9042, 10.1021/jp402509w Park, 2016, Thermal and Electrical Conduction of Single-crystal Bi2Te3 Nanostructures grown using a one step process, Sci. Rep., 6, 19132, 10.1038/srep19132 Balandin, 2008, Superior thermal conductivity of single-layer graphene, Nano Lett., 8, 902, 10.1021/nl0731872 Liu, 2013, Simultaneous measurement of thermal conductivity and thermal contact resistance of individual carbon fibers using Raman spectroscopy, Rev. Sci. Instrum., 84, 10.1063/1.4801495 Min, 2017, The influence of interfacial defect-region on the thermoelectric properties of nanodiamond-dispersed Bi2Te2.7Se0.3 matrix composites, Appl. Surf. Sci., 415, 109, 10.1016/j.apsusc.2016.11.054 Sun, 2014, Enhanced thermoelectric properties of n-type Bi2Te2.7Se0.3 thin films through the introduction of Pt nanoinclusions by pulsed laser deposition, Nano Energy, 8, 223, 10.1016/j.nanoen.2014.06.011 Li, 2018, Effective atomic interface engineering in Bi2Te2.7Se0.3 thermoelectric material by atomic-layer-deposition approach, Nano Energy, 49, 257, 10.1016/j.nanoen.2018.04.047 Mingo, 2008, Phonon transmission through defects in carbon nanotubes from first principles, Phys. Rev. B, 77, 10.1103/PhysRevB.77.033418 Morelli, 2008, Intrinsically minimal thermal conductivity in cubic I − V − VI 2 semiconductors, Phys. Rev. Lett., 101, 10.1103/PhysRevLett.101.035901 Cho, 1999, Antisite defects of Bi2Te3 thin films, Appl. Phys. Lett., 75, 1401, 10.1063/1.124707