Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Chloroplasts: Structure and Expression of the Plastid Genome
Tóm tắt
Trong hai thập kỷ qua, đã đạt được nhiều thành công trong việc nghiên cứu cấu trúc và biểu hiện của bộ gen plastid. Chuỗi phân tử chính của hàng trăm bộ gen plastid thực vật đã được xác định, điều này cho phép chúng ta hiểu các quy luật cơ bản của cấu trúc plastome. Các RNA-polymerase và sigma-factors mã hóa từ nhân mới đã được phát hiện. Các cơ chế chịu trách nhiệm cho việc điều chỉnh biểu hiện của gen plastid sau phiên mã, bao gồm cắt nối và chỉnh sửa, đang được nghiên cứu tích cực. Ngày càng có nhiều dữ liệu về vai trò quan trọng nhất của nucleoid trong quá trình sinh tổng hợp chloroplast đang nổi lên. Hiện nay, nhiều sự chú ý đang được dành cho việc nghiên cứu các protein liên quan đến RNA-polymerase loại vi khuẩn. Việc xác định chuỗi phân tử chính của bộ gen cho một số loại cây cao hơn đã tạo ra thông tin mới về sự trao đổi vật liệu di truyền giữa các bào quan tế bào. Hiện tại, tín hiệu giữa các bào quan trong tế bào thực vật đang là một chủ đề nghiên cứu tích cực. Trong bài đánh giá này, một loạt các vấn đề được thảo luận rất ngắn gọn, bao gồm một số yếu tố của sự tiến hóa của chloroplast và tín hiệu nhân-plastid. Một số đặc điểm tổ chức của vật liệu di truyền chloroplast được mô tả. Ngoài ra, các giai đoạn cơ bản của sự biểu hiện của bộ gen plastid cũng được thảo luận.
Từ khóa
Tài liệu tham khảo
Danilenko, N.G. and Davydenko, O.G., Miry genomov organell (The Worlds of Organelle Genomes), Minsk: Tekhnalogiya, 2003.
Martin, W. and Herrmann, R.G., Gene transfer from organelles to the nucleus: how much, what happens, and why? Plant Physiol., 1998, vol. 118, pp. 9–17.
Martin, W., Rujan, T., Richly, E., Hansen, A., Cornelsen, S., Lins, T., Leister, D., Stoebe, B., Hasegawa, M., and Penny, D., Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, pp. 12246–12251.
Nakayama, T. and Archibald, J.M., Evolving a photosynthetic organelle, BMC Biol., 2012, vol. 10: 35. doi 10.1186/1741-7007-10-35
Matsuo, M., Ito, Y., Yamauchi, R., and Obokata, J., The rice nuclear genome continuously integrates, shuffles, and eliminates the chloroplast genome to cause chloroplast–nuclear DNA flux, Plant Cell, 2005, vol. 17, pp. 665–675.
Cullis, C.A., Vorster, B.J., van der Vyver, C., and Kunert, K.J., Transfer of genetic material between the chloroplast and nucleus: how is it related to stress in plants? Ann. Bot., 2009, vol. 103, pp. 625–633.
Stegemann, S., Hartmann, S., Ruf, S., and Bock, R., High-frequency gene transfer from the chloroplast genome to the nucleus, Proc. Natl. Acad. Sci. USA, 2003, vol. 100, pp. 8828–8833.
Huang, C.Y., Ayliffe, M.A., and Timmis, J.N., Direct measurement of the transfer rate of chloroplast DNA into the nucleus, Nature, 2003, vol. 422, pp. 72–76.
Bräutigam, K., Dietzel, L., and Pfannschmidt, Th., Plastid–nucleus communication: anterograde and retrograde signalling in the development and function of plastids, in Topics in Current Genetic, Vol. 19: Cell and Molecular Biology of Plastids, Bock, R., Ed., Berlin, Heidelberg: Springer-Verlag, 2007, pp. 409–451.
Kleffmann, T., Hirsch-Hoffmann, M., Gruissem, W., and Baginsky, S., plprot: A comprehensive proteome database for different plastid types, Plant Cell Physiol., 2006, vol. 47, pp. 432–436.
Nott, A., Jung, H.-S., Kousservitzky, S., and Chory, J., Plastid-to-nucleus retrograde signaling, Annu. Rev. Plant Biol., 2006, vol. 57, pp. 739–759.
Yurina, N.P., Osipenkova, O.V., and Odintsova, M.S., Higher plant tetrapyrrols: their biosynthesis and its regulation, tetrapyrrol role in transmission of retrograde signals, Russ. J. Plant Physiol., 2012, vol. 59, pp. 1–13.
Börner, T., The discovery of plastid-to-nucleus retrograde signaling—a personal perspective, Protoplasma, 2017, vol. 254, no. 5: pp. 1845–1855. doi 10.1007/s00709-017-1104-1
Mayfield, S. and Taylor, W., Carotenoid-deficient maize seedlings fail to accumulate lightharvesting chlorophyll a/b binding protein (LHCP) mRNA, Eur. J. Biochem., 1984, vol. 144, pp. 79–84.
Oelmüller, R. and Mohr, H., Photooxidative destruction of chloroplasts and its cosequences for expression of nuclear genes, Planta, 1986, vol. 167, pp. 106–113.
Strand, A., Plastid-to-nucleus signaling, Curr. Opin. Plant Biol., 2004, vol. 7, pp. 621–625.
Susek, R., Ausubel, F., and Chory, J., Signal transduction mutants of Arabidopsis uncouple nuclear CAB and RBCS gene expression from chloroplast development, Cell, 1993, vol. 74, pp. 787–799.
Fey, V., Wagner, R., Bräutigam, K., Wirtz, M., Hell, R., Dietzmann, A., Leister, D., Oelmäller, R., and Pfannschmidt, T., Retrograde plastid redox signals in the expression of nuclear genes for chloroplast proteins of Arabidopsis thaliana, J. Biol. Chem., 2005, vol. 280, pp. 5318–5328.
Op den Camp, R.G., Przybyla, D., Ochsenbein, C., Laloi, C., Kim, C., Danon, A., Wagner, D., Hideg, E., Gobel, C., Feussner, I., Nater, M., and Apel, K., Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis, Plant Cell, 2003, vol. 15, pp. 2320–2332.
Wagner D., Przybyla D., Op den Camp, R., Kim, C., Landgraf, F., Lee, K.P., Wursch, M., Laloi, C., Nater, M., Hideg, E., and Apel, K., The genetic basis of singlet oxygen-induced stress responses of Arabidopsis thaliana, Science, 2004, vol. 306, pp. 1183–1185.
Hedtke, B., Wagner, I., Börner, T., and Hess, W.R., Inter-organellar crosstalk in higher plants: impaired chloroplast development affects mitochondrial gene and transcript levels, Plant J., 1999, vol. 19, pp. 635–643.
Hess, W.R., Hübschmann, T., and Börner, T., Ribosome-deficient plastids of albostrians barley: extreme representatives of non-photosynthetic plastids, Endocytobiosis Cell Res., 1994, vol. 10, pp. 65–80.
Busi, M.V., Gomez-Lobato, M.E., Rius, S.P., Turowski, V.R., Casati, P., Zabaleta, E.J., Gomez-Casati, D.F., and Araya, A., Effect of mitochondrial dysfunction on carbon metabolism and gene expression in flower tissues of Arabidopsis thaliana, Mol. Plant, 2011, vol. 4, pp. 127–143.
Joyard, J., Ferro, M., Masselon, Ch., Seigneurin-Berny, D., Salvi, D., Garin, J., and Rolland, N., Chloroplast proteomics and the compartmentation of plastidial isoprenoid biosynthetic pathways, Mol. Plant, 2009, vol. 2, pp. 1154–1180.
Sakakibara, H., Cytokinins: activity, biosynthesis, and translocation, Annu. Rev. Plant Biol., 2006, vol. 57, pp. 431–449.
Reyes-Prieto, A. and Moustafa, A., Plastid-localized amino acid biosynthetic pathways of Plantae are predominantly composed of non-cyanobacterial enzymes, Sci. Rep., 2012, vol. 2, pp. 1–12. doi 10.1038/srep00955
Clément, C. and Pacini, E., Anther plastids in angiosperms, Bot. Rev., 2001, vol. 67: 54. doi 10.1007/BF02857849
Pyke, K., Plastid biogenesis and differentiation, in Topics in Current Genetics, Vol. 19: Cell and Molecular Biology of Plastids, Bock, R., Ed., Berlin, Heidelberg: Springer-Verlag, 2007, pp. 1–28.
Ris, H. and Plaut, W., Ultrastructure of DNA-containing areas in the chloroplast of Chlamydomonas, J. Cell Biol., 1962, vol. 13, pp. 383–391.
Bendich, A.J., Why do chloroplasts and mitochondria contain so many copies of their genome? BioEssays, 1987, vol. 6, pp. 279–282.
Liere, K. and Berner, T., Development-dependent changes in the amount and structural organization of plastid DNA, in Plastid Development in Leaves during Growth and Senescence, Advances in Photosynthesis and Respiration, Biswal, B., Krupinska, K., and Biswal, U.C., Eds., Dordrecht: Springer Science+Business Media, 2013, pp. 215–237.
Baumgartner, B.J., Rapp, J.C., and Mullet, J.E., Plastid transcription activity and DNA copy number increase early in barley chloroplast development, Plant Physiol., 1989, vol. 89, pp. 1011–1118.
Evans, I.M., Rus, A.M., Belanger, E.M., Kimoto, M., and Brusslan, J.A., Dismantling of Arabidopsis thaliana mesophyll cell chloroplasts during natural leaf senescence, Plant Biol., 2010, vol. 12, pp. 1–12.
Wicke, S., Schneeweiss, G.M., de Pamphilis, C.W., Müller, K.F., and Quandt, D., The evolution of the plastid chromosome in land plants: gene content, gene order, gene function, Plant Mol. Biol., 2011, vol. 76, pp. 273–297.
Sugiura, M., The chloroplast genome, Plant Mol. Biol., 1992, vol. 19, pp. 149–168.
Bock, R., Structure, function, and inheritance of plastid genomes, in Topics in Current Genetics, Vol. 19: Cell and Molecular Biology of Plastids, Bock, R., Ed., Berlin, Heidelberg: Springer-Verlag, 2007, pp. 29–62.
Yurina, N.P., Sharapova, L.S., and Odintsova, M.S., Structure of plastid genomes of photosynthetic eukaryotes, Biochemistry (Moscow), 2017, vol. 82, pp. 678–691.
Antonov, A.S., Genosistematika rastenii (Plant Gene Systematics), Moscow: Akademkniga, 2006.
Averina, N.G., Rudoi, A.B., Savchenko, G.E., Fradkin, L.I., Chaika, M.T., Belyaeva, O.B., Odintsova, M.S., Ostrovskaya, L.K., and Filippovich, I.I., Biosintez pigmentnogo apparata fotosinteza (The Biosynthesis of Photosynthetic Pigment Apparatus), Minsk: Nauka i tekhnika, 1988.
Liere, K. and Börner, T., Transcription and transcriptional regulation in plastids, in Topics in Current Genetics, Vol. 19: Cell and Molecular Biology of Plastids, Bock, R., Ed., Berlin, Heidelberg: Springer-Verlag, 2007, pp. 121–174.
Lysenko, E.A., Plant sigma factors and their role in plastid transcription, Plant Cell Rep., 2007, vol. 26, pp. 845–859.
Sasaki, Y., Konishi, T., and Nagano, Y., The compartmentation of acetyl-coenzyme A carboxylase in plants, Plant Physiol., 1995, vol. 108, pp. 445–449.
Krupinska, K., Melonek, J., and Krause, K., New insights into plastid nucleoid structure and functionality, Planta, 2013, vol. 237, pp. 653–664.
Sakai, A., Takano, H., and Kuroiwa, H., Organelle nuclei in higher plants: structure, composition, function, and evolution, Int. Rev. Cytol., 2004, vol. 238, pp. 59–118.
Pfalz, J. and Pfannschmidt, Th., Essential nucleoid proteins in early chloroplast development, Trends Plant Sci., 2013, vol. 18, pp. 186–194.
Melonek, J., Oetke, S., and Krupinska, K., Multifunctionality of plastid nucleoids as revealed by proteome analyses, Biochim. Biophys. Acta, 2016, vol. 1864, pp. 1016–1038.
Majeran, W., Friso, G., Asakura, Y., Qu, X., Huang, M., Ponnala, L., Watkins, K.P., Barkan, A., and van Wijk, K.J., Nucleoid-enriched proteomes in developing plastids and chloroplasts from maize leaves; a new conceptual framework for nucleoid functions, Plant Physiol., 2012, vol. 158, pp. 156–189.
Kabeya, Y., Nakanishi, H., Suzuki, K., Ichikawa, T., Kondou, Y., Matsui, M., and Miyagishima, S.Y., TheYlmG protein has a conserved function related to the distribution of nucleoids in chloroplasts and cyanobacteria, BMC Plant Biol., 2010, vol. 10: 57. doi 10.1186/1471-2229-10-57
Krupinska, K., Oetke, S., Desel, C., Mulisch, M., Schäfer, A., Hollmann, J., Kumlehn, J., and Hensel, G., WHIRLY1 is a major organizer of chloroplast nucleoids, Front. Plant Sci., 2014, vol. 5: 432. doi 10.3389/fpls.2014.00432
Lysenko, E.A. and Kusnetsov, V.V., Plastid RNA polymerases, Mol. Biol., 2005, vol. 39, pp. 762–775.
Liere, K. and Börner, T., Transcription of plastid genes, in Regulation of Transcription in Plants, Grasser, K.D., Ed., Oxford: Blackwell, 2006, pp. 184–224.
Lerbs-Mache, S., Function of plastid sigma factors in higher plants: regulation of gene expression or just preservation of constitutive transcription? Plant Mol. Biol., 2011, vol. 76, pp. 235–249.
Nagashima, A., Hanaoka, M., Shikanai, T., Fujiwara, M., Kanamaru, K., Takahashi, H., and Tanaka, K., The multiple-stress responsive plastid sigma factor, SIG5, directs activation of the psbD blue light-responsive promoter (BLRP) in Arabidopsis thaliana, Plant Cell Physiol., 2004, vol. 45, pp. 357–368.
Steiner, S., Schröter, Y., Pfalz, J., and Pfannschmidt, T., Identification of essential subunits in the plastidencoded RNA polymerase complex reveals building blocks for proper plastid development, Plant Physiol., 2011, vol. 157, pp. 1043–1055.
Yu, Q.B., Huang, C., and Yang, Z.N., Nuclearencoded factors associated with the chloroplast transcription machinery of higher plants, Front. Plant Sci., 2014, vol. 5: 316. doi 10.3389/fpls.2014.00316
Hess, W.R. and Börner, T., Organellar RNA polymerases of higher plants, Int. Rev. Cytol., 1999, vol. 190, pp. 1–59.
Börner, T., Aleynikova, A.Yu., Zubo, Ya.O., and Kusnetsov, V.V., Chloroplast RNA polymerases: role in chloroplast biogenesis, Biochim. Biophys. Acta—Bioenergetics, 2015, vol. 1847, pp. 761–769.
Tarasenko, V.I., Katyshev, A.I., Yakovleva, T.V., Garnik, E.Y., Chernikova, V.V., Konstantinov, Y.M., and Koulintchenko, M.V., RPOTmp, an Arabidopsis RNA polymerase with dual targeting, plays an important role in mitochondria, but not in chloroplasts, J. Exp. Bot., 2016, vol. 67, pp. 5657–5669.
Legen, J., Kemp, S., Krause, K., Profanter, B., Herrmann, R.G., and Maier, R., Comparative analysis of plastid transcription profiles of entire plastid chromosomes from tobacco attributed to wild-type end PEP-deficient transcription machineries, Plant J., 2002, vol. 31, pp. 171–188.
Zhelayzkova, P., Sharma, C.V., Förstner, K.U., Liere, K., Vogel, J., and Börner, T., The primary transcriptome of barley chloroplasts: numerous noncoding RNAs and the domonating role of the plastidencoded RNA polymerase, Plant Cell, 2012, vol. 24, pp. 123–136.
Eberhard, S., Drapier, D., and Wollman, F.-A., Searching limiting steps in the expression of chloroplast-encoded proteins: relations between gene copy number, transcription, transcript abundance and translation rate in the chloroplast of Chlamydomonas reinhardtii, Plant J., 2002, vol. 31, pp. 149–160.
Fromm, H., Devic, M., Fluhr, R., Edelman, M., Control of psbA gene expression: in mature Spirodela chloroplasts light regulation of 32-kD protein synthesis is independent of transcript level, EMBO J., 1985, vol. 4, pp. 291–295.
Klaff, P. and Gruissem, W., Changes in chloroplast mRNA stability during leaf development, Plant Cell, 1991, vol. 3, pp. 517–529.
Kahlau, S. and Bock, R., Plastid transcriptomics and translatomics of tomato fruit development and chloroplast-to-chromoplast differentiation: chromoplast gene expression largely serves the production of a single protein, Plant Cell, 2008, vol. 20, pp. 856–874.
Westhoff, P. and Herrmann, R.G., Complex RNA maturation in chloroplasts. The psbB operon from spinach, Eur. J. Biochem., 1988, vol. 171, pp. 551–564.
Schmitz-Linneweber, C. and Barkan, A., RNA splicing and RNA editing in chloroplasts, in Topics in Current Genetic, Vol. 19: Cell and Molecular Biology of Plastids, Bock, R., Ed., Berlin, Heidelberg: Springer-Verlag, 2007, pp. 213–248.
Stern, D.B., Goldschmidt-Clermont, M., and Hanson, M.R., Chloroplast RNA metabolism, Annu. Rev. Plant Biol., 2010, vol. 61, pp. 125–155.
Germain, A., Hotto, A.M., Barkan, A., and Stern, D.B., RNA processing and decay in plastids, Wiley Interdiscip. Rev. RNA, 2013, vol. 4, pp. 295–316.
Bock, R., Sense from nonsense: how the genetic information of chloroplasts is altered by RNA editing, Biochimie, 2000, vol. 82, pp. 549–557.
Shikanai, T., RNA editing in plants: machinery and flexibility of site recognition, Biochim. Biophys. Acta, 2015, vol. 1847, pp. 779–785. doi 10.1016/j.bbabio. 2014.12.010
Sugiura, M., RNA editing in chloroplasts, in Nucleic Acids and Molecular Biology, Vol. 20: RNA Editing, Güringer, H.U., Ed., Berlin, Heidelberg: Springer-Verlag, 2008, pp. 123–142.
Barkan, A., Expression of plastid genes: organelle-specific elaborations on a prokaryotic scaffold, Plant Physiol., 2011, vol. 155, pp. 1520–1532.
Hunt, A.G., Messenger RNA 3'-end formation and the regulation of gene expression, in Regulation of Gene Expression in Plants, Bassett, C.L., Ed., Berlin, Heidelberg: Springer-Verlag, 2007, pp. 101–122.
Tiller, N. and Bock, R., The translational apparatus of plastids and its role in plant development, Mol. Plant, 2014, vol. 7, pp. 1105–1120.
Peled-Zehavi, H. and Danon, A., Translation and translational regulation in chloroplasts, in Topics in Current Genetic, Vol. 19: Cell and Molecular Biology of Plastids, Bock, R., Ed., Berlin, Heidelberg: Springer-Verlag, 2007, pp. 249–281.
Sugiura, M., Hirose, T., and Sugita, M., Evolution and mechanism of translation in chloroplasts, Annu. Rev. Genet., 1998, vol. 32, pp. 437–459.
Motohashi, R., Yamazaki, T., Myouga, F., Ito, T., Ito, K., Satou, M., Kobayashi, M., Nagata, N., Yoshida, S., Nagashima, A., Tanaka, K., Takahashi, S., and Shinozaki, K., Chloroplast ribosome release factor 1 (AtcpRF1) is essential for chloroplast development, Plant Mol. Biol., 2007, vol. 64, pp. 481–497.
Wang, L., Ouyang, M., Li, Q., Zou, M., Guo, J., Ma, J., Lu, C., and Zhang, L., The Arabidopsis chloroplast ribosome recycling factor is essential for embryogenesis and chloroplast biogenesis, Plant Mol. Biol., 2010, vol. 74, pp. 47–59.