Friction Property of Impact Sliding Contact under Vacuum and Microgravity
Tóm tắt
Vacuum and microgravity are two typical environments in space. High friction in the space environment is a challenge to the spacecraft. In vacuum, the adhesion effects are severe to induce a high friction force due to clean contact surfaces. Besides, the microgravity environment results in impact between the contact bodies, which will influence the friction property further. It is difficult to do microgravity friction experiments on the earth, and the chance to do a friction experiment in space is scarce. In this paper, considering adhesion effects in vacuum, a modelling method is developed to investigate the nanoscale impact sliding contact under microgravity. Based on energy conservation principle, the kinematic mechanism of a sliding contact body under microgravity is modeled, and the effects of impact on friction property is studied by comparing with the result of a smooth sliding contact. Considering the kinematic mechanism, the friction properties are investigated for different impact velocity and different tip radius. The kinetic energy of the tip will be converted to the mechanical energy during the impact process, and the friction forces could be underestimated if the impact effects are neglected. Owing to the contribution of impact velocity and the mass of the tip to the kinetic energy, the friction forces are increased as the increase of impact velocity and tip radius. Furthermore, using the principle of tribology, the ploughing component and adhesion component of the friction force are discussed to explain the friction phenomena under vacuum and microgravity environments.
Tài liệu tham khảo
Agrawal, P.M., Rice, B.M., Thompson, D.L.: Predicting trends in rate parameters for self-diffusion on FCC metal surfaces. Surf. Sci. 515(1), 21–35 (2002)
Alves, J., Peixinho, N., Tavares da Silva, M., Flores, P., Lankarani, H.M.: A comparative study of the viscoelastic constitutive models for frictionless contact interfaces in solids. Mech. Mach. Theory. 85, 172–188 (2015)
Bai, Z.F., Zhao, Y.: A hybrid contact force model of revolute joint with clearance for planar mechanical systems. Int. J. Nonlin. Mech. 48, 15–36 (2013)
Baney, J.M., Hui, C.-Y.: A cohesive zone model for the adhesion of cylinders. J. Adhes. Sci. Technol. 11(3), 393–406 (1997)
Bradley, R.S.: The cohesion force between solid surfaces and the surface energy of solids. Philos. Mag. 13(86), 853–862 (1932)
Buckley, D.H.: Friction, wear and lubrication in vacuum. In: NASA Lewis Research Center NASA SP-277 (1971)
Ciavarella, M., Decuzzi, P.: The state of stress induced by the plane frictionless cylindrical contact 1: the case of elastic similarity. Int. J. Solids Struct. 38(26–27), 4507–4523 (2001a)
Ciavarella, M., Decuzzi, P.: The state of stress induced by the plane frictionless cylindrical contact 2: the general case (elastic dissimilarity). Int. J. Solids Struct. 38(26–27), 4523–4533 (2001b)
Deng, Z., Smolyanitsky, A., Li, Q.Y., Feng, X.Q., Cannara, R.J.: Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale. Nat. Mater. 11, 1032–1037 (2012)
Derjaguin, B.V., Muller, V.M., Toporov, Y.P.: Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 53(2), 314–326 (1975)
Dong, Y., Li, Q., Martini, A.: Molecular dynamics simulation of atomic friction: a review and guide. J. Vac. Sci. Technol. A. 31(3), 030801(1–24) (2013)
Erkaya, S.: Prediction of vibration characteristics of a planar mechanism having imperfect joints using neural network. J. Mech. Sci. Technol. 26(5), 1419–1430 (2012)
Flores, P., Lankarani, H.M.: Dynamic response of multibody systems with multiple clearance joints. J. Comput. Nonlin. Dyn. 7(3), 636–647 (2012)
Gao, G.T., Cannara, R.J., Carpick, R.W., Harrison, J.A.: Atomic-scale friction on diamond: a comparison of different sliding directions on (001) and (111) surfaces using MD and AFM. Langmuir. 23(10), 5394–5405 (2007)
Gaponenko, Y., Shevtsova, V.: Shape of diffusive interface under periodic excitations at different gravity levels. Microgravity Sci. Technol. 28(4), 431–439 (2016)
Harrison, J.A., White, C.T., Colton, R.J., Brenner, D.W.: Molecular-dynamics simulations of atomic-scale friction of diamond surfaces. Phys. Rev. B. 46(15), 9700–9708 (1992)
Harrison, J.A., White, C.T., Colton, R.J., Brenner, D.W.: Effect of atomic-scale surface roughness on friction: a molecular dynamics study of diamond surfaces. Wear. 168(1–2), 127–133 (1993)
Hertz, H.: On the contact of solids-on the contact of rigid elastic solids and on hardness. In: Jones, D.E., Schott, G.A. (Trans.) Miscellaneous Papers, pp. 146–183. MacMillan and Co. Ltd., London (1896)
Jansen, L., Hölscher, H., Fuchs, H., Schirmeisen, A.: Temperature dependence of atomic-scale stick-slip friction. Phys. Rev. Lett. 104(25), 256101(1–4) (2010)
Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and the contact of elastic solids. Proc. R. Soc. London, Ser. A. 324(1558), 301–313 (1971)
Johnson, K.L., Greenwood, J.A.: An adhesion map for the contact of elastic spheres. J. Colloid Interface Sci. 192(2), 326–333 (1997)
Johnson, K.L.: Mechanics of adhesion. Tribol. Int. 31(8), 413–418 (1998)
Karpunin, I.E., Kozlova, A.N., Kozlov, N.V.: Behavior of a light solid in a rotating horizontal cylinder with liquid under vibration. Microgravity Sci. Technol. 30(3–4), 399–409 (2018)
Karthikeyan, S., Agrawal, A., Rigney, D.A.: Molecular dynamics simulations of sliding in an Fe-cu tribopair system. Wear. 267(5–8), 1166–1176 (2009)
Kim, H.-J., Kim, D.-E.: Nano-scale friction: a review. Int. J. Precis. Eng. Man. 10(2), 141–151 (2009)
Krick, B.A., Muratore, C., Burris, D.L., Carpick, R.W., Prasad, S.V., Korenyi-Both, A., Voevodin, A.A., Jones, J.G., Sawyer, W.G.: Space tribology: experiments in low earth orbit, vol. 8-13. World Tribology Congress, Torino, Italy (2013)
Lankarani, H.M., Nikravesh, P.E.: A contact force model with hysteresis damping for impact analysis of multibody systems. J. Mech. Des. 112(3), 369–376 (1990)
Lee, C.G., Li, Q.Y., Kalb, W., Liu, X.Z., Berger, H., Carpick, R.W., Hone, J.: Frictional characteristics of atomically thin sheets. Science. 328(5974), 76–80 (2010)
Liu, C.S., Zhang, K., Yang, R.: The compliance contact model of cylindrical joints with clearance. Acta Mech. Sinica. 21(5), 451–458 (2005)
Liu, C.S., Zhang, K., Yang, R.: The FEM analysis and approximate model for cylindrical joints with clearances. Mech. Mach. Theory. 42(2), 183–197 (2007)
Luan, B., Robbins, M.O.: The breakdown of continuum models for mechanical contacts. Nature. 435, 929–932 (2005)
Luan, B.Q., Hyun, S., Molinari, J.F., Bernstein, N., Robbins, M.O.: Multiscale modeling of two-dimensional contacts. Phys. Rev. E. 74(4), 046710(1–11) (2006)
Ma, J., Qian, L., Chen, G., Li, M.: Dynamic analysis of mechanical systems with planar revolute joints with clearance. Mech. Mach. Theory. 94, 148–164 (2015)
Maugis, D.: Adhesion of spheres: the JKR-DMT transition using a Dugdale model. J. Colloid Interface Sci. 150(1), 243–269 (1992)
Mo, Y.F., Turner, K.T., Szlufarska, I.: Friction laws at the nanoscale. Nature. 457, 1116–1119 (2009)
Moore, D.F.: Principles and Applications of Tribology. Pergamon Press, Oxford (1975)
Morrow, C.A., Lovell, M.R.: An extension to a cohesive zone solution for adhesive cylinders. ASME. J. Tribol. 127(2), 447–450 (2005)
Pimenova, A.V., Goldobin, D.S., Lyubimova, T.P.: Comparison of the effect of horizontal vibrations on interfacial waves in a two-layer system of inviscid liquids to effective gravity inversion. Microgravity Sci. Technol. 30(1–2), 1–10 (2018)
Qi, Y., Cheng, Y.-T., Çağin, T., Goddard III, W.A.: Friction anisotropy at Ni(100)/(100) interfaces: molecular dynamics studies. Phys. Rev. B. 66(8), 085420(1–7) (2002)
Socoliuc, A., Gnecco, E., Maier, S., Pfeiffer, O., Baratoff, A., Bennewitz, R., Meyer, E.: Atomic-scale control of friction by actuation of nanometer-sized contacts. Science. 313(5784), 207–210 (2006)
Swope, W.C., Andersen, H.C., Berens, P.H., Wilson, K.R.: A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters. J. Chem. Phys. 76(1), 637–649 (1982)
Szlufarska, I., Chandross, M., Carpick, R.W.: Recent advances in single-asperity nanotribology. J. Phys. D. Appl. Phys. 41(12), 123001(1–39) (2008)
Tabor, D.: Surface forces and surface interactions. J. Colloid Interface Sci. 58(1), 2–13 (1977)
Tangpatjaroen, C., Grierson, D., Shannon, S., Jakes, J.E., Szlufarska, I.: Size dependence of nanoscale wear of silicon carbide. ACS Appl. Mater. Interfaces. 9(2), 1929–1940 (2017)
Tian, K.W., Gosvami, N.N., Goldsby, D.L., Liu, Y., Szlufarska, I., Carpick, R.W.: Load and time dependence of interfacial chemical bond-induced friction at the nanoscale. Phys. Rev. Lett. 118(7), 076103(1–6) (2017)
Tong, R.T., Liu, G., Liu, T.X.: Multiscale analysis on two dimensional nanoscale sliding contacts of textured surfaces. ASME J. Tribol. 133(4), 041401(1–13) (2011)
Tong, R.T., Liu, G., Liu, T.X.: Two dimensional nanoscale reciprocating sliding contacts of textured surfaces. Chin. J. Mech. Eng.-En. 29(3), 531–538 (2016)
Wang, X.P., Liu, G.: Modeling and simulation of revolute joint with clearance in planar multi-body systems. J. Mech. Sci. Technol. 29(10), 4113–4120 (2015)
Wang, X.P., Liu, G., Ma, S.J.: Dynamic analysis of planar mechanical systems with clearance joints using a new nonlinear contact force model. J. Mech. Sci. Technol. 30(4), 1537–1545 (2016)
Wang, X.P., Liu, G., Ma, S.J., Tong, R.T.: Effects of restitution coefficient and material characteristics on dynamic response of planar multi-body systems with revolute clearance joint. J. Mech. Sci. Technol. 31(2), 587–597 (2017)
Wang, Z.L., Gabriel, K.S.: The influence of film structure on the interfacial friction in annular two-phase flow under microgravity and normal gravity conditions. Microgravity Sci. Technol. 16(1–4), 264–268 (2005)
Ye, Z.J., Egberts, P., Han, G.H., Johnson, A.T., Carpick, R.W., Martini, A.: Load-dependent friction hysteresis on graphene. ACS Nano. 10(5), 5161–5168 (2016)
Zhang, Q., Qi, Y., Hector Jr., L.G., Çağin, T., Goddard III, W.A.: Atomic simulations of kinetic friction and its velocity dependence at Al/Al and α-Al2O3/α-Al2O3 interfaces. Phys. Rev. B. 72(4), 045406(1–12) (2005)
Zhang, H.W., Chang, T.C.: Edge orientation dependent nanoscale friction. Nanoscale. 10(5), 2447–2453 (2018)