The asymptotic behavior of solutions of a system of reaction-diffusion equations which models the Belousov-Zhabotinskii chemical reaction

Journal of Differential Equations - Tập 40 - Trang 253-278 - 1981
Gene A Klaasen1, William C Troy1
1Department of Mathematics, University of Colorado, Boulder, Cororado, U.S.A.

Tài liệu tham khảo

Aronson, 1975, Nonlinear diffusion in population genetics, combustion and nerve propagation Belousov, 1959, A periodic reaction and its mechanism, Ref. Radiat. Med., 145 Coddington, 1955 Rield, 1972, Oscillations in chemical systems II thorough analysis of temporal oscillations in the bromate-cerium-malonic acid system, J. Amer. Chem. Soc., 94, 8649, 10.1021/ja00780a001 Field, 1974, Limit cycle oscillations in a model of a real chemical reaction, J. Chem. Phys., 60, 1877, 10.1063/1.1681288 Fife, 1979 Fischer, 1937, The advance of advantageous genes, Ann. Eugenics, 7, 355, 10.1111/j.1469-1809.1937.tb02153.x Friedman, 1964 Klaasen, 1981, The stability of traveling wave front solutions of a reaction-diffusion system, SIAM J. Appl. Math., 10.1137/0141011 Kolmogoroff, 1937, Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bull. Univ. Moshu, Ser. Internat. Sec. A, 1, 1 Murray, 1977 Protter, 1967 Troy, 1980, The existence of traveling wave front solutions of a model of the Belousov-Zhabotinskii chemical reaction, J. Differential Equations, 36, 89, 10.1016/0022-0396(80)90078-9 Weinberger, 1975, Invariant sets for weakly coupled parabolic and elliptic systems, Rend. Mat., 8, 295 Zaikin, 1970, Concentrations wave propagation in a two dimensional liquid phase self oscillating system, Nature, 225, 535, 10.1038/225535b0