Effects of pre-treatments on aging precipitates and corrosion resistance of a creep-aged Al–Zn–Mg–Cu alloy
Tài liệu tham khảo
Zhou, 2014, Hot tensile deformation behaviors and constitutive model of an Al–Zn–Mg–Cu alloy, Mater. Des., 59, 141, 10.1016/j.matdes.2014.02.052
Rokni, 2014, The strain-compensated constitutive equation for high temperature flow behavior of an Al–Zn–Mg–Cu alloy, J. Mater. Eng. Perform., 23, 4002, 10.1007/s11665-014-1195-1
Li, 2013, Modeling the high-temperature creep behaviors of 7075 and 2124 aluminum alloys by continuum damage mechanics model, Comput. Mater. Sci., 73, 72, 10.1016/j.commatsci.2013.02.022
Maximov, 2014, Modeling of strain hardening and creep behaviour of 2024T3 aluminium alloy at room and high temperatures, Comput. Mater. Sci., 83, 381, 10.1016/j.commatsci.2013.11.057
Marlaud, 2011, Relationship between alloy composition, microstructure and exfoliation corrosion in Al–Zn–Mg–Cu alloys, Corros. Sci., 53, 3139, 10.1016/j.corsci.2011.05.057
Panigrahi, 2011, Effect of ageing on microstructure and mechanical properties of bulk, cryorolled, and room temperature rolled Al 7075 alloy, J. Alloys Compd., 509, 9609, 10.1016/j.jallcom.2011.07.028
Hatamleh, 2009, Corrosion susceptibility of peened friction stir welded 7075 aluminum alloy joints, Corros. Sci., 51, 135, 10.1016/j.corsci.2008.09.031
Na, 2008, Comparison of susceptibility to pitting corrosion of AA2024-T4, AA7075-T651 and AA7475-T761 aluminium alloys in neutral chloride solutions using electrochemical noise analysis, Corros. Sci., 50, 248, 10.1016/j.corsci.2007.05.028
Zupanc, 2010, Effect of pitting corrosion on fatigue performance of shot-peened aluminum alloy 7075-T651, J. Mater. Process. Technol., 210, 1197, 10.1016/j.jmatprotec.2010.03.004
Ibrahim, 2014, A preliminary study on optimizing the heat treatment of high strength Al–Cu–Mg–Zn alloys, Mater. Des., 57, 342, 10.1016/j.matdes.2013.11.078
Liu, 2011, On the age-hardening of an Al–Zn–Mg–Cu alloy: a vacancy perspective, Scripta Mater., 64, 21, 10.1016/j.scriptamat.2010.08.054
Sha, 2004, Early-stage precipitation in Al–Zn–Mg–Cu alloy (7050), Acta Mater., 52, 4503, 10.1016/j.actamat.2004.06.025
Liu, 2014, Effect of cooling aging on microstructure and mechanical properties of an Al–Zn–Mg–Cu alloy, Mater. Des., 57, 79, 10.1016/j.matdes.2013.12.024
Han, 2011, Effects of pre-stretching and ageing on the strength and fracture toughness of aluminum alloy 7050, Mater. Sci. Eng. A, 528, 3714, 10.1016/j.msea.2011.01.068
Xiao, 2011, Influence of retrogression and re-aging treatment on corrosion behaviour of an Al–Zn–Mg–Cu alloy, Mater. Des., 32, 2149, 10.1016/j.matdes.2010.11.036
Wang, 2014, Effect of retrogression and reaging treatment on the microstructure and fatigue crack growth behavior of 7050 aluminum alloy thick plate, Mater. Des., 55, 857, 10.1016/j.matdes.2013.09.063
Buha, 2008, Secondary ageing in an aluminium alloy 7050, Mater. Sci. Eng. A, 492, 1, 10.1016/j.msea.2008.02.039
Marlaud, 2010, Evolution of precipitate microstructures during the retrogression and re-ageing heat treatment of an Al–Zn–Mg–Cu alloy, Acta Mater., 58, 4814, 10.1016/j.actamat.2010.05.017
Angappan, 2011, Retrogression and re-aging treatment on short transverse tensile properties of 7010 aluminium alloy extrusions, Mater. Des., 32, 4050, 10.1016/j.matdes.2011.03.034
Wang, 2008, Effect of pre-strain and two-step aging on microstructure and stress corrosion cracking of 7050 alloy, Mater. Sci. Eng. A, 494, 360, 10.1016/j.msea.2008.04.023
Dixit, 2008, Structure-property correlations in Al 7050 and Al 7055 high-strength aluminum alloys, Mater. Sci. Eng. A, 478, 163, 10.1016/j.msea.2007.05.116
Viana, 1999, Retrogression and re-aging of 7075 aluminium alloy: microstructural characterization, J. Mater. Process. Technol., 92–93, 54, 10.1016/S0924-0136(99)00219-8
Xu, 2008, Effect of solution treatment on the corrosion behaviour of aluminium alloy AA7150: optimisation for corrosion resistance, Mater. Sci. Eng. A, 478, 163
Xu, 2012, The effect of pre-ageing temperature and retrogression heating rate on the strength and corrosion behaviour of AA7150, Corros. Sci., 54, 17, 10.1016/j.corsci.2011.08.042
Lin, 2006, An integrated process for modelling of precipitation hardening and springback in creep age-forming, Int. J. Mach. Tools Manuf., 46, 1266, 10.1016/j.ijmachtools.2006.01.026
Liu, 2013, Creep age formability of friction stir welded 2A12 aluminum alloy structures, Adv. Mater. Res., 753–755, 145
Bakavos, 2004, A comparison of the effects of age forming on the precipitation behavior in 2 xxx, 6 xxx and 7 xxx aerospace alloys, Mater. Forum, 28, 124
Liu, 2014, Effects of two-stage creep-aging on precipitates of an Al–Cu–Mg alloy, Mater. Sci. Eng. A, 614, 45, 10.1016/j.msea.2014.07.014
D. Bakavos, P.B. Prangnell, G. Sha, A. Cerezo, The Effect of an External Applied Far Field Tensile Stress on the Early Stages of Ageing in a 7475 Aerospace Alloy. ICAA11, Germany; 2008.
Bakavos, 2006, Microstructural interactions during stress ageing a 7475 aerospace alloy, Mater. Sci. Forum, 519, 333, 10.4028/www.scientific.net/MSF.519-521.333
Lin, 2013, Effect of creep-aging on precipitates of 7075 aluminum alloy, Mater. Sci. Eng. A, 588, 347, 10.1016/j.msea.2013.09.045
Lin, 2014, Effect of creep-aging processing on corrosion resistance of an Al–Zn–Mg–Cu alloy, Mater. Des., 61, 228, 10.1016/j.matdes.2014.04.054
Deschamps, 2012, In situ evaluation of dynamic precipitation during plastic straining of an Al–Zn–Mg–Cu alloy, Acta Mater., 60, 1905, 10.1016/j.actamat.2012.01.002
Fribourg, 2011, Evolution of precipitate microstructure during creep of an AA7449 T7651 aluminum alloy, Metall. Mater. Trans. A, 42, 3934, 10.1007/s11661-011-0786-9
Fribourg, 2011, Microstructure-based modelling of isotropic and kinematic strain hardening in a precipitation-hardened aluminium alloy, Acta Mater., 59, 3621, 10.1016/j.actamat.2011.02.035
Chen, 2012, Microstructures and mechanical properties of age-formed 7050 aluminum alloy, Mater. Sci. Eng. A, 539, 115, 10.1016/j.msea.2012.01.067
Guo, 2013, Influence of elastic tensile stress on aging process in an Al–Zn–Mg–Cu alloy, Mater. Lett., 106, 14, 10.1016/j.matlet.2013.04.095
Zhu, 2000, Precipitation strengthening of stress-aged Al–xCu alloys, Acta Mater., 48, 2239, 10.1016/S1359-6454(00)00026-4
Zhu, 2001, Stress aging of Al–xCu alloys: experiments, Acta Mater., 49, 2285, 10.1016/S1359-6454(01)00119-7
Zhu, 1999, Strengthening effect of unshearable particles of finite size: a computer experimental study, Acta Mater., 47, 3263, 10.1016/S1359-6454(99)00179-2
A.A., Designation, Metals-Mechanical Testing (Annual Book of ASTM standards), 2011, pp. 316–329.
Bai, 2015, Age hardening and mechanical properties of cast Al–Cu alloy modified by La and Pr, Adv. Eng. Mater., 17, 143, 10.1002/adem.201400178
Liu, 2014, Heating aging behavior of Al–8.35Zn–2.5Mg–2.25Cu alloy, Mater. Des., 60, 116, 10.1016/j.matdes.2014.03.060
Stiller, 1999, Investigation of precipitation in an Al–Zn–Mg alloy after two-step ageing treatment at 100 and 150°C, Mater. Sci. Eng. A, 270, 55, 10.1016/S0921-5093(99)00231-2
Nicolas, 2003, Characterisation and modelling of precipitate evolution in an Al–Zn–Mg alloy during non-isothermal heat treatments, Acta Mater., 51, 6077, 10.1016/S1359-6454(03)00429-4
Zhao, 2007, On the first breakdown in AA7075-T6, Corros. Sci., 49, 3064, 10.1016/j.corsci.2007.02.001
Zhao, 2007, The effect of temper on the first breakdown in AA7075, Corros. Sci., 49, 3089, 10.1016/j.corsci.2007.02.004
Trdan, 2012, Evaluation of corrosion resistance of AA6082-T651 aluminium alloy after laser shock peening by means of cyclic polarisation and ElS methods, Corros. Sci., 59, 324, 10.1016/j.corsci.2012.03.019
Andreatta, 2004, Corrosion behaviour of different tempers of AA7075 aluminium alloy, Electrochim. Acta, 49, 2851, 10.1016/j.electacta.2004.01.046
Uroš, 2012, Evaluation of corrosion resistance of AA6082-T651 aluminum alloy after laser shock peening by means of cyclic polarisation and ElS methods, Corros. Sci., 59, 324, 10.1016/j.corsci.2012.03.019
Li, 2007, Simulation study on function mechanism of some precipitates in localized corrosion of Al alloys, Corros. Sci., 49, 2436, 10.1016/j.corsci.2006.12.002
Birbilis, 2006, Electrochemical behavior and localized corrosion associated with Al7Cu2Fe particles in aluminum alloy 7075-T651, Corros. Sci., 48, 4202, 10.1016/j.corsci.2006.02.007
Xu, 2012, Improved solution treatment for an as-rolled Al–Zn–Mg–Cu alloy. Part I. Characterisation of constituent particles and overheating, Mater. Sci. Eng. A, 534, 234, 10.1016/j.msea.2011.11.065
Huang, 2012, Influence of grain-boundary pre-precipitation and corrosion characteristics of inter-granular phases on corrosion behaviors of an Al–Zn–Mg–Cu alloy, Mater. Sci. Eng. B, 177, 862, 10.1016/j.mseb.2012.04.008
Knight, 2010, Correlations between intergranular stress corrosion cracking, grain-boundary microchemistry, and grain-boundary electrochemistry for Al–Zn–Mg–Cu alloys, Corros. Sci., 52, 4073, 10.1016/j.corsci.2010.08.024
Dey, 2008, Effect of temper on the distribution of pits in AA7075 alloys, Corros. Sci., 50, 2895, 10.1016/j.corsci.2008.07.015
