Differential Extensions of Weakly Principally Quasi-Baer Rings

Acta Mathematica Vietnamica - Tập 44 - Trang 977-991 - 2018
Kamal Paykan1, Ahmad Moussavi1
1Department of Pure Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran, Iran

Tóm tắt

A ring R is called weakly principally quasi-Baer or simply (weakly p.q.-Baer) if the right annihilator of a principal right ideal is right s-unital by right semicentral idempotents, which implies that R modulo, the right annihilator of any principal right ideal, is flat. We study the relationship between the weakly p.q.-Baer property of a ring R and those of the differential polynomial extension R[x;δ], the pseudo-differential operator ring R((x− 1;δ)), and also the differential inverse power series extension R[[x− 1;δ]] for any derivation δ of R. Examples to illustrate and delimit the theory are provided.

Tài liệu tham khảo

Armendariz, E.P.: A note on extensions of Baer and p.p.-rings. J. Austral. Math. Soc. 18, 470–473 (1974) Berberian, S.K.: Baer ∗-Rings. Springer, New York (1972) Birkenmeier, G.F., Kim, J.Y., Park, J.K.: On quasi-Baer rings. Algebra and Its Applications, 67–92. Contemp. Math., vol. 259. Am. Math. Soc., Providence (2000) Birkenmeier, G.F., Kim, J.Y., Park, J.K.: Principally quasi-Baer rings. Comm. Algebra 29(2), 639–660 (2001) Birkenmeier, G.F., Kim, J.Y., Park, J.K.: Polynomial extensions of Baer and quasi-Baer rings. J. Pure Appl. Algebra 159(1), 25–42 (2001) Birkenmeier, G.F., Park, J.K.: Triangular matrix representations of ring extensions. J. Algebra 265(2), 457–477 (2003) Chase, S.U.: A generalization the ring of triangular matrices. Nagoya Math. J. 18, 13–25 (1961) Cheng, Y., Huang, F.K.: A note on extensions of principally quasi-Baer rings. Taiwanese J. Math. 12(7), 1721–1731 (2008) Clark, W.E.: Twisted matrix units semigroup algebras. Duke Math. J. 34, 417–423 (1967) Dzhumadil’daev, A.S.: Derivations and central extensions of the Lie algebra of formal pseudo differential operators. Algebra i Anal. 6(1), 140–158 (1994) Goodearl, K.R.: Centralizers in differential, pseudo differential, and fractional differential operator rings. Rocky Mountain J. Math. 13(4), 573–618 (1983) Goodearl, K.R., Warfield, R.B.: An Introduction to Noncommutative Noetherian Rings. Cambridge University Press, Cambridge (1989) Hirano, Y.: On annihilator ideals of a polynomial ring over a noncommutative ring. J. Pure Appl. Algebra 168(1), 45–52 (2002) Kaplansky, I.: Projections in Banach Algebras. Ann. of Math. (2) 53, 235–249 (1951) Kaplansky, I.: Rings of Operators. Benjamin, New York (1968) Lam, T.Y.: Lectures on modules and rings Graduate Texts in Math, vol. 189. Springer, New York (1999) Letzter, E.S., Wang, L.: Noetherian skew inverse power series rings. Algebr. Represent. Theory 13(3), 303–314 (2010) Liu, Z.: A note on principally quasi-Baer rings. Comm. Algebra 30(8), 3885–3890 (2002) Liu, Z., Zhao, R.: A generalization of PP-rings and p.q.-Baer rings. Glasg. Math. J. 48(2), 217–229 (2006) Majidinya, A., Moussavi, A., Paykan, K.: Generalized APP-rings. Comm. Algebra 41(12), 4722–4750 (2013) Majidinya, A., Moussavi, A., Paykan, K.: Rings in which the annihilator of an ideal is pure. Algebra Colloq. 22(1), 947–968 (2015) Majidinya, A., Moussavi, A.: Weakly principally quasi-Baer rings. J. Algebra Appl. 15(1), 20 (2016) Manaviyat, R., Moussavi, A., Habibi, M.: Principally quasi-Baer skew power series modules. Comm. Algebra 41(4), 1278–1291 (2013) Manaviyat, R., Moussavi, A.: On annihilator ideals of pseudo-differential operator rings. Algebra Colloq. 22(4), 607–620 (2015) Nasr-Isfahani, A.R., Moussavi, A.: On weakly rigid rings. Glasg. Math. J. 51 (3), 425–440 (2009) Paykan, K., Moussavi, A.: Special properties of diffreential inverse power series rings. J. Algebra Appl. 15(10), 23 (2016) Paykan, K., Moussavi, A.: Study of skew inverse Laurent series rings. J. Algebra Appl. 16(12), 33 (2017) Paykan, K.: Skew inverse power series rings over a ring with projective socle. Czechoslovak Math. J. 67(2), 389–395 (2017) Paykan, K., Moussavi, A.: Primitivity of skew inverse Laurent series rings and related rings. J. Algebra Appl. https://doi.org/10.1142/S0219498819501160 (2019) Pollingher, A., Zaks, A.: On Baer and quasi-Baer rings. Duke Math. J. 37, 127–138 (1970) Rickart, C.E.: Banach algebras with an adjoint operation. Ann. of Math. (2) 47, 528–550 (1946) Schur, I.: Uber vertauschbare lineare Differentialausdrucke, Sitzungsber. Berliner Math. Ges. 4, 2–8 (1905) Small, L.W.: Semihereditary rings. Bull. Am. Math. Soc. 73, 656–658 (1967) Stenström, B.: Rings of Quotients. Springer, New York-Heidelberg (1975) Tominaga, H.: On s-unital rings. Math. J. Okayama Univ. 18(2), 117–134 (1975/76) Tuganbaev, D.A.: Laurent series rings and pseudo-differential operator rings. J. Math. Sci. (N.Y.) 128(3), 2843–2893 (2005)