Control of McKean–Vlasov dynamics versus mean field games
Tóm tắt
We discuss and compare two investigation methods for the asymptotic regime of stochastic differential games with a finite number of players as the number of players tends to the infinity. These two methods differ in the order in which optimization and passage to the limit are performed. When optimizing first, the asymptotic problem is usually referred to as a mean-field game. Otherwise, it reads as an optimization problem over controlled dynamics of McKean–Vlasov type. Both problems lead to the analysis of forward–backward stochastic differential equations, the coefficients of which depend on the marginal distributions of the solutions. We explain the difference between the nature and solutions to the two approaches by investigating the corresponding forward–backward systems. General results are stated and specific examples are treated, especially when cost functionals are of linear-quadratic type.
Tài liệu tham khảo
citation_journal_title=Appl. Math. Optim.; citation_title=A maximum principle for sdes of mean-field type; citation_author=D. Andersson, B. Djehiche; citation_volume=63; citation_issue=3; citation_publication_date=2010; citation_pages=341-356; citation_doi=10.1007/s00245-010-9123-8; citation_id=CR1
Bardi, M.: Explicit solutions of some linear quadratic mean field games. Technical report, Padova University, May 2011
Cardaliaguet, P.: Notes on mean field games. Technical report (2010)
Carmona, R., Delarue, F.: Forward backward stochastic differential equations of McKean–Vlasov type. Technical report (2012)
Carmona, R., Delarue, F.: Optimal control of McKean–Vlasov stochastic dynamics. Technical report (2012)
Carmona, R., Delarue, F.: Probabilistic analysis of mean field games. Technical report (2012)
Carmona, R., Delarue, F., Espinosa, G-E., Touzi, N.: Singular forward–backward stochastic differential equations and emissions derivatives. Ann. Appl. Probab. (2012) (in press)
citation_journal_title=Stoch. Process. Appl.; citation_title=On the existence and uniqueness of solutions to FBSDEs in a non-degenerate case; citation_author=F. Delarue; citation_volume=99; citation_publication_date=2002; citation_pages=209-286; citation_doi=10.1016/S0304-4149(02)00085-6; citation_id=CR8
citation_title=Estimates of the Solutions of a System of Quasi-Linear PDEs. A Probabilistic Scheme. Séminaire de Probabilités XXXVII; citation_publication_date=2003; citation_id=CR9; citation_author=F. Delarue; citation_publisher=Springer
citation_title=Controlled Markov Processes and Viscosity Solutions; citation_publication_date=2010; citation_id=CR10; citation_author=W. Fleming; citation_author=M. Soner; citation_publisher=Springer
Guéant, O., Lasry, J.M., Lions, P.L.: Mean field games and applications. In: Carmona R. et~al. (eds.) Paris Princeton Lectures in Mathematical Finance IV, vol 2003 of Lecture Notes in Mathematics. Springer, New York (2010)
citation_journal_title=Stoch. Anal. Appl.; citation_title=Nonzero-sum linear quadratic stochastic differential games and backward forward equations; citation_author=S. Hamadène; citation_volume=17; citation_publication_date=1999; citation_pages=117-130; citation_doi=10.1080/07362999908809591; citation_id=CR12
citation_journal_title=Games Econ. Behav.; citation_title=Stationary equilibria in discounted stochastic games with weakly interacting players; citation_author=U. Horst; citation_volume=51; citation_publication_date=2005; citation_pages=83-108; citation_doi=10.1016/j.geb.2004.03.003; citation_id=CR13
citation_journal_title=J. Math. Econ.; citation_title=Anonymous sequential games; citation_author=B. Jovanovic, R.W. Rosenthal; citation_volume=17; citation_publication_date=1988; citation_pages=77-87; citation_doi=10.1016/0304-4068(88)90029-8; citation_id=CR14
citation_journal_title=Comptes Rendus de l’Académie des Sciences de Paris Ser. A; citation_title=Jeux à champ moyen I. Le cas stationnaire; citation_author=J.M. Lasry, P.L. Lions; citation_volume=343; citation_publication_date=2006; citation_pages=619-625; citation_doi=10.1016/j.crma.2006.09.019; citation_id=CR15
citation_journal_title=Comptes Rendus de l’Académie des Sciences de Paris Ser. A; citation_title=Jeux à champ moyen II. Horizon fini et contrôle optimal; citation_author=J.M. Lasry, P.L. Lions; citation_volume=343; citation_publication_date=2006; citation_pages=679-684; citation_doi=10.1016/j.crma.2006.09.018; citation_id=CR16
citation_journal_title=Japanese Journal of Mathematics; citation_title=Mean field games; citation_author=J.M. Lasry, P.L. Lions; citation_volume=2; citation_publication_date=2007; citation_pages=229-260; citation_doi=10.1007/s11537-007-0657-8; citation_id=CR17
Lasry, J.M., Lions, P.L.: Mean field games. Cahiers de la Chaire Finance et Développement Durable 2 (2007)
Lions, P.L.: Théorie des jeux à champs moyen et applications. Lectures of the Collége de France, Paris, France.
http://www.college-de-france.fr/site/pierre-louis-lions/
(2007–2008)
citation_journal_title=SIAM J. Control Optim.; citation_title=Fully coupled forward–backward stochastic differential equations and applications to optimal control; citation_author=S. Peng, Z. Wu; citation_volume=37; citation_publication_date=1999; citation_pages=825-843; citation_doi=10.1137/S0363012996313549; citation_id=CR20
citation_title=Mathematical Control Theory: Deterministic Finite Dimensional Systems (Second Edition); citation_publication_date=1998; citation_id=CR21; citation_author=E.D. Sontag; citation_publisher=Springer
Sznitman, A.S.: Topics in propagation of chaos. In: Burkholder D.L. et al. (eds.) Ecole de Probabilités de Saint Flour, XIX-1989, vol 1464 of Lecture Notes in Mathematics, pp. 165–251. Springer, Berlin (1989)
citation_journal_title=Appl. Math. Optim.; citation_title=Linear forward backward stochastic differential equations; citation_author=J. Yong; citation_volume=39; citation_publication_date=1999; citation_pages=93-119; citation_doi=10.1007/s002459900100; citation_id=CR23
citation_journal_title=Probab. Theory Relat. Fields; citation_title=Linear forward backward stochastic differential equations with random coefficients; citation_author=J. Yong; citation_volume=135; citation_publication_date=2006; citation_pages=53-83; citation_doi=10.1007/s00440-005-0452-5; citation_id=CR24
citation_title=Stochastic Controls: Hamiltonian Systems and HJB Equations; citation_publication_date=1999; citation_id=CR25; citation_author=J. Yong; citation_author=X. Zhou; citation_publisher=Springer