A new protein-ligand binding sites prediction method based on the integration of protein sequence conservation information
Tóm tắt
Prediction of protein-ligand binding sites is an important issue for protein function annotation and structure-based drug design. Nowadays, although many computational methods for ligand-binding prediction have been developed, there is still a demanding to improve the prediction accuracy and efficiency. In addition, most of these methods are purely geometry-based, if the prediction methods improvement could be succeeded by integrating physicochemical or sequence properties of protein-ligand binding, it may also be more helpful to address the biological question in such studies. In our study, in order to investigate the contribution of sequence conservation in binding sites prediction and to make up the insufficiencies in purely geometry based methods, a simple yet efficient protein-binding sites prediction algorithm is presented, based on the geometry-based cavity identification integrated with sequence conservation information. Our method was compared with the other three classical tools: PocketPicker, SURFNET, and PASS, and evaluated on an existing comprehensive dataset of 210 non-redundant protein-ligand complexes. The results demonstrate that our approach correctly predicted the binding sites in 59% and 75% of cases among the TOP1 candidates and TOP3 candidates in the ranking list, respectively, which performs better than those of SURFNET and PASS, and achieves generally a slight better performance with PocketPicker. Our work has successfully indicated the importance of the sequence conservation information in binding sites prediction as well as provided a more accurate way for binding sites identification.
Tài liệu tham khảo
Thornton JM, Todd AE, Milburn D, Borkakoti N, Orengo CA: From structure to function: approaches and limitations. Nat Struct Biol 2000, 7(Suppl):991–994.
Levitt DG, Banaszak LJ: POCKET: a computer graphics method for identifying and displaying protein cavities and their surrounding amino acids. J Mol Graph 1992, 10(4):229–234. 10.1016/0263-7855(92)80074-N
Hendlich M, Rippmann F, Barnickel G: LIGSITE: automatic and efficient detection of potential small molecule-binding sites in proteins. J Mol Graph Model 1997, 15(6):359–363. 389 389 10.1016/S1093-3263(98)00002-3
Brady GP Jr., Stouten PF: Fast prediction and visualization of protein binding pockets with PASS. J Comput Aided Mol Des 2000, 14(4):383–401. 10.1023/A:1008124202956
Laskowski RA: SURFNET: a program for visualizing molecular surfaces, cavities, and intermolecular interactions. J Mol Graph 1995, 13(5):323–330. 307–328 307-328 10.1016/0263-7855(95)00073-9
Weisel M, Proschak E, Schneider G: PocketPicker: analysis of ligand binding-sites with shape descriptors. Chem Cent J 2007, 1: 7. 10.1186/1752-153X-1-7
Laurie AT, Jackson RM: Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites. Bioinformatics 2005, 21(9):1908–1916. 10.1093/bioinformatics/bti315
Zhou YQ, Liang SD, Zhang C, Liu S: Protein binding site prediction using an empirical scoring function. Nucleic Acids Res 2006, 34(13):3698–3707. 10.1093/nar/gkl454
Sonavane S, Chakrabarti P: Prediction of active site cleft using support vector machines. Journal of Chemical Information and Modeling 2010, 50(12):2266–2273. 10.1021/ci1002922
Capra JA, Singh M: Predicting functionally important residues from sequence conservation. Bioinformatics 2007, 23(15):1875–1882. 10.1093/bioinformatics/btm270
Manning JR, Jefferson ER, Barton GJ: The contrasting properties of conservation and correlated phylogeny in protein functional residue prediction. BMC Bioinformatics 2008, 9: 51. 10.1186/1471-2105-9-51
Caffrey DR, Somaroo S, Hughes JD, Mintseris J, Huang ES: Are protein-protein interfaces more conserved in sequence than the rest of the protein surface? Protein Sci 2004, 13(1):190–202. 10.1110/ps.03323604
Prymula K, Jadczyk T, Roterman I: Catalytic residues in hydrolases: analysis of methods designed for ligand-binding site prediction. J Comput Aided Mol Des 2011, 25(2):117–133. 10.1007/s10822-010-9402-0
Huang B, Schroeder M: LIGSITEcsc: predicting ligand binding sites using the Connolly surface and degree of conservation. BMC Struct Biol 2006, 6: 19. 10.1186/1472-6807-6-19
Naccess Home Page[http://www.bioinf.manchester.ac.uk/naccess/]
Eisenhaber F, P Argos: Improved strategy in analytic surface calculation for molecular systems: handling of singularities and computational efficiency. Journal of Computational Chemistry 2004, 14(11):1272–1280.
Tsodikov OV, Record MT Jr., Sergeev YV: Novel computer program for fast exact calculation of accessible and molecular surface areas and average surface curvature. J Comput Chem 2002, 23(6):600–609. 10.1002/jcc.10061
Wu D, Sun J, Xu T, Wang S, Li G, Li Y, Cao Z: Stacking and energetic contribution of aromatic islands at the binding interface of antibody proteins. Immunome Res 2010, 6(Suppl 1):S1. 10.1186/1745-7580-6-S1-S1
Barber CB, Dobkin DP, Huhdanpaa H: The Quickhull algorithm for convex hulls. Acm T Math Software 1996, 22(4):469–483. 10.1145/235815.235821
Petrek M, Otyepka M, Banas P, Kosinova P, Koca J, Damborsky J: CAVER: a new tool to explore routes from protein clefts, pockets and cavities. BMC Bioinformatics 2006, 7: 316. 10.1186/1471-2105-7-316
Coleman RG, Sharp KA: Travel depth, a new shape descriptor for macromolecules: application to ligand binding. J Mol Biol 2006, 362(3):441–458. 10.1016/j.jmb.2006.07.022
Magliery TJ, Regan L: Sequence variation in ligand binding sites in proteins. BMC Bioinformatics 2005, 6: 240. 10.1186/1471-2105-6-240
Goldenberg O, Erez E, Nimrod G, Ben-Tal N: The ConSurf-DB: pre-calculated evolutionary conservation profiles of protein structures. Nucleic Acids Res 2009, 37(Database issue):D323–327.
Huang B: MetaPocket:a meta approach to improve protein ligand binding site prediction. OMICS 2009, 13(4):325–330. 10.1089/omi.2009.0045
Nayal M, Honig B: On the nature of cavities on protein surfaces: application to the identification of drug-binding sites. Proteins 2006, 63(4):892–906. 10.1002/prot.20897
An J, Totrov M, Abagyan R: Comprehensive identification of "druggable" protein ligand binding sites. Genome Inform 2004, 15(2):31–41.
Zhong S, MacKerell AD Jr.: Binding response: a descriptor for selecting ligand binding site on protein surfaces. J Chem Inf Model 2007, 47(6):2303–2315. 10.1021/ci700149k
Puvanendrampillai D, Mitchell JB: L/D Protein Ligand Database (PLD): additional understanding of the nature and specificity of protein-ligand complexes. Bioinformatics 2003, 19(14):1856–1857. 10.1093/bioinformatics/btg243
Ding J, Koellner G, Grunert HP, Saenger W: Crystal structure of ribonuclease T1 complexed with adenosine 2'-monophosphate at 1.8-A resolution. J Biol Chem 1991, 266(23):15128–15134.
Jmol: an open-source Java viewer for chemical structures in 3D[http://www.jmol.org/]