Aligning integrated assessment modelling with socio-technical transition insights: An application to low-carbon energy scenario analysis in Europe

Elsevier BV - Tập 151 - Trang 119177 - 2020
Mariësse A.E. van Sluisveld1,2, Andries F. Hof1,2, Samuel Carrara3,4,5, Frank W. Geels6, Måns Nilsson7, Karoline Rogge8,9, Bruno Turnheim6,10,9,11, Detlef P. van Vuuren1,2
1Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, the Netherlands
2PBL Netherlands Environmental Assessment Agency, The Hague, the Netherlands
3Fondazione Eni Enrico Mattei (FEEM), Milan, Italy
4Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Milan, Italy
5Renewable and Appropriate Energy Laboratory (RAEL) and Energy and Resources Group (ERG), University of California, Berkeley, United States
6Alliance Manchester Business School, University of Manchester, Manchester, UK
7Stockholm Environment Institute (SEI), Stockholm, Sweden
8Fraunhofer Institute for System and Innovation Research (Fraunhofer ISI), Karlsruhe, Germany
9Science Policy Research Unit (SPRU), University of Sussex, Brighton, UK
10Laboratoire Interdisciplinaire Sciences Innovations Sociétés (UMR-LISIS) (CNRS-IFRIS), University Paris-Est Marne-la-Vallée, Paris, France
11Department of Geography, King's College London, UK

Tài liệu tham khảo

Alcamo, 2008, Chapter six the SAS approach: combining qualitative and quantitative knowledge in environmental scenarios, Dev. Integr. Environ. Assess., 2, 123 Anderson, 2016, The trouble with negative emissions, Science, 354, 182, 10.1126/science.aah4567 de Boer, 2017, Representation of variable renewable energy sources in TIMER, an aggregated energy system simulation model, Energy Econ., 64, 600, 10.1016/j.eneco.2016.12.006 Brown, 2015, Interdisciplinarity: how to catalyse collaboration, Nature|, 525, 315, 10.1038/525315a Clarke, 2009, International climate policy architectures: overview of the EMF 22 international scenarios, Energy Econ., 31, S64, 10.1016/j.eneco.2009.10.013 Clarke, 2014, Assessing transformation pathways Comber, 2011 Council of the European Union Daioglou, 2014, Energy demand and emissions of the non-energy sector, Energy Environ. Sci., 7, 482, 10.1039/C3EE42667J De Cian, 2018 Fuss, 2014, Betting on negative emissions, Nat. Clim. Chang., 4, 850, 10.1038/nclimate2392 Geden, 2015 Geels, 2002, Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study, Res. Policy, 31, 1257, 10.1016/S0048-7333(02)00062-8 Geels, 2007, Typology of sociotechnical transition pathways, Res. Policy, 36, 399, 10.1016/j.respol.2007.01.003 Geels, 2015 Geels, 2016, Bridging analytical approaches for low-carbon transitions, Nat. Clim. Chang., 6, 576, 10.1038/nclimate2980 Geels, 2017, Sociotechnical transitions for deep decarbonization, Science, 357, 1242, 10.1126/science.aao3760 Girod, 2012, Global travel within the 2 C climate target, Energy Policy, 45, 152, 10.1016/j.enpol.2012.02.008 Guivarch, 2017, Scenario techniques for energy and environmental research: an overview of recent developments to broaden the capacity to deal with complexity and uncertainty, Environ. Model. Softw., 97, 201, 10.1016/j.envsoft.2017.07.017 Gupta, 2007, Policies, instruments and co-operative arrangements Hodson, 2014 Hof, 2018 Isaac, 2009, Modeling global residential sector energy demand for heating and air conditioning in the context of climate change, Energy Policy, 37, 507, 10.1016/j.enpol.2008.09.051 Kriegler, 2013, What does the 2 °C target imply for a global climate agreement in 2020? The LIMITS study on Durban platform scenarios, Clim. Change Econ., 04, 1340008, 10.1142/S2010007813400083 Kriegler, 2014, The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies, Clim. Chang., 123, 353, 10.1007/s10584-013-0953-7 Kruger, 2016, Abandon hype in climate models, Guardian Li, 2017, Actors behaving badly: exploring the modelling of non-optimal behaviour in energy transitions, Energ. Strat. Rev., 15, 57, 10.1016/j.esr.2017.01.002 Mallampalli, 2016, Methods for translating narrative scenarios into quantitative assessments of land use change, Environ. Model. Softw., 82, 7, 10.1016/j.envsoft.2016.04.011 Markard, 2012, Sustainability transitions: an emerging field of research and its prospects, Res. Policy, 41, 955, 10.1016/j.respol.2012.02.013 McCollum, 2016, Improving the behavioral realism of global integrated assessment models: An application to consumers’ vehicle choices, Transp. Res. Part D: Transp. Environ., 55, 322, 10.1016/j.trd.2016.04.003 Nakicenovic, 2000 Nykvist, 2015 O'Neill, 2014, A new scenario framework for climate change research: the concept of shared socioeconomic pathways, Clim. Chang., 122, 387, 10.1007/s10584-013-0905-2 Peters, 2016, The ‘best available science’ to inform 1.5 °C policy choices, Nat. Clim. Chang., 6, 646, 10.1038/nclimate3000 Rogge, 2015 Rosenbloom, 2017, Pathways: an emerging concept for the theory and governance of low-carbon transitions, Glob. Environ. Chang., 43, 37, 10.1016/j.gloenvcha.2016.12.011 Rotmans, 2006, Tools for integrated sustainability assessment: a two-track approach, Integ. Assess. Int. J., 6, 35 Salter, 2010, Participatory methods of integrated assessment—a review, Wiley Interdiscip. Rev. Clim. Chang., 1, 697, 10.1002/wcc.73 Schmid, 2012, Ambitious mitigation scenarios for Germany: a participatory approach, Energy Policy, 51, 662, 10.1016/j.enpol.2012.09.007 Stehfest, 2014 Stern, 2016, Economics: current climate models are grossly misleading, Nature, 407, 10.1038/530407a Thema, 2014 Trutnevyte, 2016, Reinvigorating the scenario technique to expand uncertainty consideration, Clim. Chang., 135, 373, 10.1007/s10584-015-1585-x Turnheim, 2014 Turnheim, 2014 Turnheim, 2015, Evaluating sustainability transitions pathways: bridging analytical approaches to address governance challenges, Glob. Environ. Chang., 35, 239, 10.1016/j.gloenvcha.2015.08.010 van Asselt, 2003, From projects to program in integrated assessment research, 215 van 't Klooster, 2006, Practising the scenario-axes technique, Futures, 38, 15, 10.1016/j.futures.2005.04.019 van Sluisveld, 2016, Exploring the implications of lifestyle change in 2 °C mitigation scenarios using the IMAGE integrated assessment model, Technol. Forecast. Soc. Chang., 102, 309, 10.1016/j.techfore.2015.08.013 van Vuuren, 2007, Energy systems and climate policy - long-term scenarios for an uncertain future van Vuuren, 2012, Scenarios in global environmental assessments: key characteristics and lessons for future use, Glob. Environ. Chang., 22, 884, 10.1016/j.gloenvcha.2012.06.001 Victor, 2015, Climate change: embed the social sciences in climate policy, Nature, 520, 27, 10.1038/520027a Wright, 2013, Scenario methodology: new developments in theory and practice, Technol. Forecast. Soc. Chang., 80, 561, 10.1016/j.techfore.2012.11.011